【数学】2022年度神奈川県立高校入試数学大問2 - 質問解決D.B.(データベース)

【数学】2022年度神奈川県立高校入試数学大問2

問題文全文(内容文):
(ア)$0.2x+0.8y=1,\dfrac{1}{2}x+\dfrac{7}{8}y=-2$

(イ)$4x^2-x-2=0$

(ウ)$y=\dfrac{-1}{4}x^2,$xの変域が$-2\leqq x\leqq 4$のとき,yの変域は?

(エ)A班の生徒と,A班よりも5人少ないB班の生徒で,体育館にイスを並べた。A班の生徒はそれぞれ3脚ずつ並べ、B班の生徒はそれぞれ4脚ずつ並べたところ,A班の生徒が並べたイスの総数はB班の生徒が並べたイスの総数より3脚多かった。A班の生徒の人数を求めなさい。

(オ)$x=\sqrt6+\sqrt3,y=\sqrt6-\sqrt3$ のとき、$x^2y+xy^2$の値は?
チャプター:

0:00 オープニング
0:05 (ア)
2:22 (イ)
3:45 (ウ)
5:22 (エ)
6:30 (オ)
8:17 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(ア)$0.2x+0.8y=1,\dfrac{1}{2}x+\dfrac{7}{8}y=-2$

(イ)$4x^2-x-2=0$

(ウ)$y=\dfrac{-1}{4}x^2,$xの変域が$-2\leqq x\leqq 4$のとき,yの変域は?

(エ)A班の生徒と,A班よりも5人少ないB班の生徒で,体育館にイスを並べた。A班の生徒はそれぞれ3脚ずつ並べ、B班の生徒はそれぞれ4脚ずつ並べたところ,A班の生徒が並べたイスの総数はB班の生徒が並べたイスの総数より3脚多かった。A班の生徒の人数を求めなさい。

(オ)$x=\sqrt6+\sqrt3,y=\sqrt6-\sqrt3$ のとき、$x^2y+xy^2$の値は?
投稿日:2023.02.02

<関連動画>

福田の1.5倍速演習〜合格する重要問題008〜神戸大学文系数学第1問〜対称式と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#図形と方程式#解と判別式・解と係数の関係#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
s,tを$s \lt t$をみたす実数とする。座標平面上の3点$A(1,2),B(s,s^2),C(t,t^2)$が一直線上にあるとする。以下の問いに答えよ。
(1)sとtの関係式を求めよ。
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。

神戸大学文系過去問
この動画を見る 

福田の数学〜多変数の方程式はこう扱え〜早稲田大学2023年社会科学部第2問〜3変数の不定方程式の整数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 定数$m$に対して$x$,$y$,$z$の方程式
$xyz$+$x$+$y$+$z$=$xy$+$yz$+$zx$+$m$ ...①
を考える。次の問いに答えよ。
(1)$m$=1のとき①式を満たす実数$x$,$y$,$z$の組を全て求めよ。
(2)$m$=5のとき①式を満たす整数$x$,$y$,$z$の組を全て求めよ。ただし、
$x$≦$y$≦$z$ とする。
(3)$xyz$=$x$+$y$+$z$ を満たす整数$x$,$y$,$z$の組を全て求めよ。ただし、
0<$x$≦$y$≦$z$ とする。
この動画を見る 

東北大 対数方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

数学「大学入試良問集」【19−19 定積分で示された関数の最大最小】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#中京大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{x}(x\ \cos\ t-\sin\ t)dt(0 \leqq x \leqq 2\pi)$について次の問いに答えよ。
(1)$f(x)$を微分せよ。
(2)$f(x)$の最大値と最小値、およびそのときの$x$の値を求めよ。
この動画を見る 

神戸大 積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
全ての実数$x$で$f(x)=|x^2-1|+\displaystyle \int_{0}^{ 2 } f(x) dx$が成り立つ

(1)
$f(x)$を求めよ

(2)
$\displaystyle \int_{0}^{ a } f(x) dx=\displaystyle \frac{4}{3}$を満たす正の実数$a$

出典:1981年神戸大学 過去問
この動画を見る 
PAGE TOP