20年5月数学検定1級1次試験(行列) - 質問解決D.B.(データベース)

20年5月数学検定1級1次試験(行列)

問題文全文(内容文):
①$A \mathbb{ x }$ =$λ \mathbb{ x }$ ($\mathbb{ x }≠0$)
λをAの固有値
$\mathbb{ x }$をλに関する固有ベクトル
$A \mathbb{ x }$-$λ \mathbb{ x }$=$\emptyset$
$(A-λE) \mathbb{ x } = \emptyset$
det(A-λE) =0
$\because det(A-λE) ≠ 0$ $ \Rightarrow $ $ \mathbb{ x } = \emptyset$となり矛盾する。

②A:3×3のケーリーハミルトンの定理
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a_{ 11 } & a_{ 12 } & a_{ 13 } \\
a_{ 21 } & a_{ 22 } & a_{ 23 } \\
a_{ 31 } & a_{ 32 } & a_{ 33 }
\end{array}
\right)
\end{eqnarray}
とする
$A^3-(a_{11}+a_{22}+a_{33})A+CA-(detA)E =\emptyset$
$C=a_{11}a_{22}-a_{12}a_{21}+a_{22}a_{33} - a_{23}a_{32}+a_{11}a_{23}-a_{13}a_{21}$

4⃣
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
4 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}
\right)
\end{eqnarray}
(1)Aの固有値を求めよ。
(2)$A^3-gA^2+18A-12E$を求めよ
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
①$A \mathbb{ x }$ =$λ \mathbb{ x }$ ($\mathbb{ x }≠0$)
λをAの固有値
$\mathbb{ x }$をλに関する固有ベクトル
$A \mathbb{ x }$-$λ \mathbb{ x }$=$\emptyset$
$(A-λE) \mathbb{ x } = \emptyset$
det(A-λE) =0
$\because det(A-λE) ≠ 0$ $ \Rightarrow $ $ \mathbb{ x } = \emptyset$となり矛盾する。

②A:3×3のケーリーハミルトンの定理
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a_{ 11 } & a_{ 12 } & a_{ 13 } \\
a_{ 21 } & a_{ 22 } & a_{ 23 } \\
a_{ 31 } & a_{ 32 } & a_{ 33 }
\end{array}
\right)
\end{eqnarray}
とする
$A^3-(a_{11}+a_{22}+a_{33})A+CA-(detA)E =\emptyset$
$C=a_{11}a_{22}-a_{12}a_{21}+a_{22}a_{33} - a_{23}a_{32}+a_{11}a_{23}-a_{13}a_{21}$

4⃣
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
4 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}
\right)
\end{eqnarray}
(1)Aの固有値を求めよ。
(2)$A^3-gA^2+18A-12E$を求めよ
投稿日:2020.06.12

<関連動画>

重積分⑫-3 #152【図形Dの重心】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$D:-1\leqq x\leqq 1,0\leqq y\leqq x^2+1$
図形$D$の重心座標$(\overline{x},\overline{y})$を求めよ.
この動画を見る 

#15 数検1級1次 過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$V:x^2+y^2+z^2\leqq 4$
$x^2+y^2\leqq 1,z\geqq 0$とする.

$\displaystyle \iiint_V\ z\ dx\ dy \ dz$を求めよ.
この動画を見る 

重積分①(高専数学 微積II,数学検定1級解析)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
重積分(累次積分)
ex1 $∬_0 xy^2+y dx dy$
$ D : 0 \leqq x \leqq 1$ , $1 \leqq y \leqq 3$
この動画を見る 

#68数学検定1級1次「答えはめっちゃスッキリ」 #定積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{ 1 } \displaystyle \frac{x^4+2x^3+4x^2+6x+2}{x^3+2x^2+2x+4}$ $dx$

出典:数検1級1次
この動画を見る 

微分方程式⑩-2【定数係数でない微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(3)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+4x=0$
(4)$t^2\dfrac{d^2x}{dt^2}+3t\dfrac{dx}{dt}+x=0$
この動画を見る 
PAGE TOP