20年5月数学検定1級1次試験(行列) - 質問解決D.B.(データベース)

20年5月数学検定1級1次試験(行列)

問題文全文(内容文):
①$A \mathbb{ x }$ =$λ \mathbb{ x }$ ($\mathbb{ x }≠0$)
λをAの固有値
$\mathbb{ x }$をλに関する固有ベクトル
$A \mathbb{ x }$-$λ \mathbb{ x }$=$\emptyset$
$(A-λE) \mathbb{ x } = \emptyset$
det(A-λE) =0
$\because det(A-λE) ≠ 0$ $ \Rightarrow $ $ \mathbb{ x } = \emptyset$となり矛盾する。

②A:3×3のケーリーハミルトンの定理
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a_{ 11 } & a_{ 12 } & a_{ 13 } \\
a_{ 21 } & a_{ 22 } & a_{ 23 } \\
a_{ 31 } & a_{ 32 } & a_{ 33 }
\end{array}
\right)
\end{eqnarray}
とする
$A^3-(a_{11}+a_{22}+a_{33})A+CA-(detA)E =\emptyset$
$C=a_{11}a_{22}-a_{12}a_{21}+a_{22}a_{33} - a_{23}a_{32}+a_{11}a_{23}-a_{13}a_{21}$

4⃣
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
4 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}
\right)
\end{eqnarray}
(1)Aの固有値を求めよ。
(2)$A^3-gA^2+18A-12E$を求めよ
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
①$A \mathbb{ x }$ =$λ \mathbb{ x }$ ($\mathbb{ x }≠0$)
λをAの固有値
$\mathbb{ x }$をλに関する固有ベクトル
$A \mathbb{ x }$-$λ \mathbb{ x }$=$\emptyset$
$(A-λE) \mathbb{ x } = \emptyset$
det(A-λE) =0
$\because det(A-λE) ≠ 0$ $ \Rightarrow $ $ \mathbb{ x } = \emptyset$となり矛盾する。

②A:3×3のケーリーハミルトンの定理
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a_{ 11 } & a_{ 12 } & a_{ 13 } \\
a_{ 21 } & a_{ 22 } & a_{ 23 } \\
a_{ 31 } & a_{ 32 } & a_{ 33 }
\end{array}
\right)
\end{eqnarray}
とする
$A^3-(a_{11}+a_{22}+a_{33})A+CA-(detA)E =\emptyset$
$C=a_{11}a_{22}-a_{12}a_{21}+a_{22}a_{33} - a_{23}a_{32}+a_{11}a_{23}-a_{13}a_{21}$

4⃣
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
4 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}
\right)
\end{eqnarray}
(1)Aの固有値を求めよ。
(2)$A^3-gA^2+18A-12E$を求めよ
投稿日:2020.06.12

<関連動画>

重積分⑩-5 #151【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
この動画を見る 

重積分⑦-4【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_D(4-x^2-y^2)dxdy$
$D:x^2+(y-1)^2 \leqq 1 $ , $y \leqq x$
この動画を見る 

20年5月数学検定1級1次試験(三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣
$tan(2Arctan \frac{1}{3} + Arctan \frac{1}{12} )$
この動画を見る 

#30 数検1級1次 過去問 複雑な定積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
定積分
$\displaystyle \int_{-1}^{1}\displaystyle \frac{x^4+2x^3+4x^2+6x+2}{x^3+2x^2+2x+4}\ dx$を計算せよ。
この動画を見る 

重積分⑨-4【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

$\iint_D\ (1+x^2+y^2)^{-\frac{5}{2}}dx\ dy $
$D:x\geqq 0,y \geqq 0$とする.
この動画を見る 
PAGE TOP