大学入試問題#620「ほぼ一択」 横浜国立大学(2023) #定積分 僚太さんの紹介 - 質問解決D.B.(データベース)

大学入試問題#620「ほぼ一択」 横浜国立大学(2023) #定積分 僚太さんの紹介

問題文全文(内容文):
$\displaystyle \int_{log\frac{\pi}{4}}^{log\frac{\pi}{2}} \displaystyle \frac{e^{2x}}{\{\sin(e^x)\}^2} dx$

出典:2023年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{log\frac{\pi}{4}}^{log\frac{\pi}{2}} \displaystyle \frac{e^{2x}}{\{\sin(e^x)\}^2} dx$

出典:2023年横浜国立大学 入試問題
投稿日:2023.10.14

<関連動画>

大学入試問題#199 東京都市大学(2016) 定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3}\displaystyle \frac{x^3-1}{x^2-1}\ dx$

出典:2016年東京都市大学 入試問題
この動画を見る 

大学入試問題#921「癖がない綺麗な神問題」

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 1$
$I(a)=\displaystyle \int_{0}^{ \pi }\displaystyle \frac{a\sin\theta}{(a^2-2a \cos\theta+1)^{\frac{3}{2}}}d\theta$

1.$I(a)$を求めよ。
2.$\displaystyle \sum_{n=2}^{\infty} I(n)$の値を求めよ。

出典:1997年千葉大学
この動画を見る 

【高校数学】毎日積分58日目~47都道府県制覇への道~【②鹿児島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x>0$で定義された曲線
$C : y=(log x)^2$
を考える
(1)$a$を正の実数とする時、点$P(a,(log a)^2)$における曲線$C$の接線$L$の方程式を求めよ。
(2)$a>1$のとき、接線$L$と$x$軸の交点の$x$座標が最大となる場合の$a$の値$a_0$を求めよ。
(3)$a$の値が(2)の$a_0$に等しいとき、直線$L$の$y≧0$の部分と曲線$C$と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる図形の体積を求めよ。
【鹿児島大学 2023】
この動画を見る 

#南山大学2021#定積分_32

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ 2 }} x\sqrt{ 4-x^2 } dx$

出典:2021年南山大学
この動画を見る 

#山梨大学2013#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$

出典:2013年山梨大学
この動画を見る 
PAGE TOP