【40分で総整理】基礎の基礎から『場合の数』(数学A) - 質問解決D.B.(データベース)

【40分で総整理】基礎の基礎から『場合の数』(数学A)

問題文全文(内容文):
1⃣
$A,B,C,D,E$の5人から3人を選んで並べるとき、その総数は?

2⃣
男子5人、女子3人の合計8人が1列に並ぶとき、次の並び方は何通りあるか。
(1)男子が両端に来る
(2)女子3人が隣り合う

3⃣
$a,b,c,d,e$を1つずつ使ってできる文字列を$abcde$から$edcba$までアルファベット順で並べるとき、$cbdea$は何番目か。

4⃣
5人を円形に並べたとき、その総数は何通り?

5⃣
1から5までの自然数を使ってできる3桁の整数は何通りあるか?
ただし同じ数字を繰り返し使ってもよい。

6⃣
$A,B,C,D,E$の5人から3人を選んで組をつくるとき、その総数は?

7⃣
生徒9人を3人ずつ、3つのグループ$A,B,C$に分ける分け方は何通りか。

8⃣
$a,a,a,b,b$の5文字を1列に並べる順列は何通りあるか。
チャプター:

0:00 オープニング
0:34 順列
4:35 条件のついた順列
8:55 辞書式配列
14:26 円順列
17:22 重複順列
19:30 組み合わせ
24:27 区別のあるグループ分け
28:02 区別のないグループ分け
33:06 同じものを含む順列

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1⃣
$A,B,C,D,E$の5人から3人を選んで並べるとき、その総数は?

2⃣
男子5人、女子3人の合計8人が1列に並ぶとき、次の並び方は何通りあるか。
(1)男子が両端に来る
(2)女子3人が隣り合う

3⃣
$a,b,c,d,e$を1つずつ使ってできる文字列を$abcde$から$edcba$までアルファベット順で並べるとき、$cbdea$は何番目か。

4⃣
5人を円形に並べたとき、その総数は何通り?

5⃣
1から5までの自然数を使ってできる3桁の整数は何通りあるか?
ただし同じ数字を繰り返し使ってもよい。

6⃣
$A,B,C,D,E$の5人から3人を選んで組をつくるとき、その総数は?

7⃣
生徒9人を3人ずつ、3つのグループ$A,B,C$に分ける分け方は何通りか。

8⃣
$a,a,a,b,b$の5文字を1列に並べる順列は何通りあるか。
投稿日:2021.05.27

<関連動画>

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$ 2人でサイコロを投げる。
1回目は$A$
$1,2,3\rightarrow$同じ人が投げる
$4,5\rightarrow$別の人が投げる
$6\rightarrow$勝ち、終了

(1)
$n$回目に$A$が投げる確率$a_{n}$は?

(2)
ちょうど$n$回目で$A$が勝つ確率は?

(3)
$n$回以内に$A$が勝つ確率は?

出典:一橋大学 過去問
この動画を見る 

【超難問】3×2×1=??が難しすぎる世界

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた$3 \times 2 \times 1$の計算
この動画を見る 

福田の数学〜中央大学2023年理工学部第1問〜複素数平面と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ さいころを2回ふって出た目の数を順に$a$, $b$とし、複素数$\alpha$, $\beta$を
$\alpha$=$\displaystyle\cos\frac{a\pi}{3}$+$\displaystyle i\sin\frac{a\pi}{3}$, $\beta$=$\displaystyle\cos\frac{b\pi}{3}$+$\displaystyle i\sin\frac{b\pi}{3}$
と定める($i$は虚数単位)。また、$\alpha$-$\beta$の絶対値を$d$=|$\alpha$-$\beta$|とおく。
(1)$d$のとりうる値は、小さいものから順に0, $\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$, $\boxed{\ \ ウ\ \ }$である。
$d$=0, $\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$, $\boxed{\ \ ウ\ \ }$が成り立つ確率はそれぞれ$\boxed{\ \ エ\ \ }$, $\boxed{\ \ オ\ \ }$, $\boxed{\ \ カ\ \ }$, $\boxed{\ \ キ\ \ }$である。
(2)$\alpha$-$\beta$が実数となる確率は$\boxed{\ \ ク\ \ }$であり、$\alpha$-$\beta$が実数という条件の下で$d$<$\boxed{\ \ ウ\ \ }$が成り立つ条件付き確率は$\boxed{\ \ ケ\ \ }$である。
(3)$\alpha^2$=$\beta^3$という条件の下で$\alpha+\beta$の虚部が正となる条件付き確率は$\boxed{\ \ コ\ \ }$である。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題003〜北海道大学2015年文系数学第4問〜隣り合う順列、隣り合わない順列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
ジョーカーを除く1組52枚のトランプのカードを1列に並べる思考を考える。
(1)番号7のカードが4枚連続して並ぶ確率を求めよ。
(2)番号7のカードが2枚ずつ隣り合い、4枚連続しては並ばない確率を求めよ。

8人の人が一列に並ぶとき、
(1)A,B,Cの3人が連続して並ぶ場合の数を求めよ。
(2)A,B,Cの3人が隣りあわないように並ぶ場合の数を求めよ。

2015北海道大学文系過去問
この動画を見る 

大阪市立大 確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$が連続対戦(引分無し)
$A$が勝つ確率は毎回$P$
$A$が$B$より先に2連勝する確率を求めよ

大阪市立大過去問
この動画を見る 
PAGE TOP