【数Ⅰ】三角比の導入から拡張まで【単位円ってどこから出てきたん?】 - 質問解決D.B.(データベース)

【数Ⅰ】三角比の導入から拡張まで【単位円ってどこから出てきたん?】

問題文全文(内容文):
三角比の導入から拡張まで解説していきます.
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の導入から拡張まで解説していきます.
投稿日:2021.10.06

<関連動画>

意外と間違える!?二次方程式 2024京都府

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$8x^2=22x$

2024京都府
この動画を見る 

【数Ⅰ】【集合と論証】集合:ベン図を利用した問題 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U=\{1,2,3,4,5,6,7,8,9\}$を全体集合とする。$U$の部分集合$A,B$について
$A∩B=\{2\}$ $\overline{A}∩B=\{4,6,8\}$ $ \overline{A}∩\overline{B}=\{1,9\}$
であるとき、次の∩を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩\overline{B}$

$U=\{x|1≦x≦10、xは整数\}$を全体集合とする。$U$の部分集合
$A=\{1,2,3,4,8\} B=\{3,4,5,6\} C=\{2,3,6,7\}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩\overline{C}$
(4)$\overline{A}∩B∩\overline{C}$
(5)$\overline{(A∩B∩C)}$
(6)$(A∪C)∩\overline{B}$

$A=\{1,3,3a-2\}$  $B=\{-5、a+2、a^2-2a+1\}$ $A∩B=\{1,4\}$のとき
定数$a$の値と和集合$A∪B$を求めよ。
この動画を見る 

人生色々 補助線の引き方も色々(3通りの解説) A

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle ADB=?$
*図は動画内参照

2021福岡県
この動画を見る 

福田のわかった数学〜高校1年生057〜図形の計量(8)正四面体の内接球の半径

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(8)
1辺の長さがaの正四面体の各面に接する内接球の半径を求めよ。
この動画を見る 

9つの正方形と角の和

アイキャッチ画像
単元: #数学(中学生)#中2数学#数Ⅰ#数A#図形の性質#図形と計量#三角形と四角形#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a + \angle b +\angle c=? $
*図は動画内参照
この動画を見る 
PAGE TOP