【数Ⅰ】三角比の導入から拡張まで【単位円ってどこから出てきたん?】 - 質問解決D.B.(データベース)

【数Ⅰ】三角比の導入から拡張まで【単位円ってどこから出てきたん?】

問題文全文(内容文):
三角比の導入から拡張まで解説していきます.
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の導入から拡張まで解説していきます.
投稿日:2021.10.06

<関連動画>

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{7}}$ 原点を$O$とする座標平面上で、2点$(\sqrt5,0),$$(-\sqrt5,0)$を焦点とし、2点$A(1,0),$$A'(-1,0)$を頂点とする双曲線を$H$とする。$H$の方程式を$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$と表すとき、$a^2=\boxed{\ \ ネ\ \ },$ $b^2=\boxed{\ \ ノ\ \ }$である。双曲線Hの漸近線のうち、傾きが正であるものの方程式は$y=\boxed{\ \ ハ\ \ }x$である。$点P(p,q)$は双曲線$H$の$第1象限$の部分を動く点とする。$点P$から$x軸$に下ろした垂線の足を$Q$、$直線PQ$と$双曲線H$の漸近線との交点のうち、$第1象限$にあるものを$R$とする。$点P$における$H$の接線と$直線x=1$との交点を$M$とし、$直線OM$と$直線AP$との交点を$N$とする。$三角形OQR$の面積を$S$、$三角形OAN$の面積を$T$とするとき、$\frac{T}{S}$は、$p=\boxed{\ \ ヒ\ \ }$のとき、最大値$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$をとる。

2021早稲田大学人間科学部過去問
この動画を見る 

2=3

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2x+2 = 3x+3
この動画を見る 

2次方程式のこれ解ける?

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
aを定数とする。xの2次方程式
$3(x+a)^2 = (2a^2+1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値を全て求めよ。(灘高校 2024)
この動画を見る 

福田の数学〜早稲田大学2024商学部第1問(4)〜放物線と2本の接線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、放物線$y=x^2$を$C$とする。点$P(s,t)$から放物線$C$に異なる2本の接線が引け、その接点をそれぞれ$A,B$とする。線分$PA,PB$と放物線$C$で囲まれた図形の面積が$\displaystyle\frac{144}{125}$であるとき$s,t$の満たす方程式は?
この動画を見る 

【高校数学】  数Ⅰ-92  三角形となる条件

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3辺の長さが、5,3,xである三角形が鈍角三角形となるように、xの範囲を定めよう。
この動画を見る 
PAGE TOP