大学入試問題#734「落とせん!!」 東海大学医学部(2004) 不定積分 - 質問解決D.B.(データベース)

大学入試問題#734「落とせん!!」 東海大学医学部(2004) 不定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{2x+1}{x(x-1)^2}dx$

出典:2004年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{2x+1}{x(x-1)^2}dx$

出典:2004年東海大学医学部 入試問題
投稿日:2024.02.13

<関連動画>

福田の数学〜早稲田大学2025商学部第2問〜x軸に関する対称移動とy=√3xに関する対称移動の組合せで決まる点列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$a,b$を実数とする。

座標平面上の点$P_1,P_2,P_3,\cdots $は

以下の条件を満たしている。

すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は

$x$軸に関して対称な位置にある。

ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で

あるとする。

また、すべての正の偶数$n$に対して、

$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な

位置にある。

ただし、$P_n$が直線$y=ax+b$上にあるときは

$P_n=P_{n+1}$であるとする。

(1)$a=0,b=1,P_1(0,0)$であるとき、

$P_{2025}$の座標を求めよ。

(2)$a=1,b=0,P_1(2,1)$であるとき、

$P_{2025}$の座標を求めよ。

(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。

$m,n$を正の整数とする。

$P_m$と$P_n$の距離の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
この動画を見る 

福田の数学〜東北大学2025理系第3問〜4次関数が極大値をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a$を実数とし、関数$f(x)$を次のように定める。

$f(x)=x^4+\dfrac{4a}{3}x^3+(a+2)x^2$

このとき、以下の問いに答えよ。

(1)関数$f(x)$が極大値をもつような$a$のとり得る

値の範囲を求めよ。

(2)関数$f(x)$が$x=0$で極大値をもつような

$a$のとり得る値の範囲を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

#宮崎大学 2020年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ x+2 }-\sqrt{ 2 }} dx$

出典:2020年宮崎大学
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第6問〜3次関数の接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$
F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、$y=F(x)$で
定まる曲線をCとする。$\alpha \lt \beta$を満たす実数$\alpha,\ \beta$に対して、C上の点A$(\alpha,F(\alpha))$
におけるCの接線を$L_{\alpha}$とするとき、Cと$L_{\alpha}$とのA以外の共有点が$B(\beta,F(\beta))$
であるとする。さらに、BにおけるCの接線を$L_{\beta}$とのB以外の共有点を$(\gamma,F(\gamma))$
とする。

(1)接線$L_{\alpha}$の方程式を$y=l_{\alpha}(x)$とし、$G(x)=F(x)-l_{\alpha}(x)$とおく。さらに、
曲線$y=G(x)$上の点$(\beta,G(\beta))$における接線の方程式を$y=m(x)$とする。$G(x)$
および$m(x)$を、それぞれ$\alpha,\beta$を用いて因数分解された形に表せ。必要ならば
xの整式で表される関数$p(x),q(x)$とそれらの導関数に関して成り立つ公式
$\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)$
を用いてもよい。

(2)接線$L_{\beta}$の方程式は(1)で定めた$l_{\alpha}(x),\ m(x)$を用いて、$y=l_{\alpha}(x)+ m(x)$で
与えられることを示せ。さらに、$\gamma$を$\alpha,\beta$を用いて表せ。

(3)曲線Cおよび$L_{\beta}$で囲まれた図形の面積を$S$とする。$S$を$\alpha,\beta$を用いて表せ。
さらに$\alpha,\beta$が$-1 \lt \alpha \lt 0$かつ$1 \lt \beta \lt 2$を満たすとき、$S$の取り得る値の
範囲を求めよ。必要ならば$r \lt s$を満たす実数$r,s$に対して成り立つ公式
$\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4$
を用いてもよい。

2021慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜京都大学2023年理系第1問(2)〜整式の割り算と余り

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 問2 整式$x^{2023}$-1 を整式$x^4$+$x^3$+$x^2$+$x$+1 で割った時の余りを求めよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP