場合分けは何パターン?多くの絶対値を含んだ問題【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

場合分けは何パターン?多くの絶対値を含んだ問題【京都大学】【数学 入試問題】

問題文全文(内容文):
nは整数
|n-1|+|n-2|+...+|n-100|の最小値を求めよ

京都大学1961年過去問
チャプター:

00:04 問題文
00:31 解答・解説
07:37 次回の問題

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nは整数
|n-1|+|n-2|+...+|n-100|の最小値を求めよ

京都大学1961年過去問
投稿日:2023.03.27

<関連動画>

福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 原点Oを中心とする半径1の円周上に2点
Q($\cos a$, $\sin a$), R($\cos(a+b), \sin(a+b)$)
をとる。ただし、a, bはa >0,b >0, a +b<$\frac{\pi}{2}$を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
$\triangle$OPQの面積と$\triangle$ORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<$\frac{\pi}{2}$-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=$\frac{\pi}{8}$, b=$\frac{\pi}{4}$のときに最大値をとることを示せ。

2020中央大学理工学部過去問
この動画を見る 

式の値 代入どうする? 京都産業大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=199,y=-98,z=102$のとき
$x^2+4xy+3y^2+z^2=?$

京都産業大学
この動画を見る 

数学「大学入試良問集」【19−24 空間図形の断面積と体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$xyz$空間の$xy$平面上に曲線$C:y=x^2,z=0$ 直線$l:y=x+a,z=0(a \leqq 1)$がある。
いま$C$と$l$の交点を$P,Q$とし、線分$PQ$を底辺とする正三角形$PQR$を$xy$平面に垂直に作る。
直線$l$を$a=1$から$C$に接するまで動かすとき、この三角形が通過してできる立体の体積$V$を求めよ。
この動画を見る 

#藤田保健衛生大学2012 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$a \gt 0,b \gt 0$
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{\{ax+b(1-x\}^2)} dx$

出典:2010年藤田保健衛生大学
この動画を見る 

福田の数学〜千葉大学2024年文系第2問〜袋から元に戻さないで球を取り出し得点を考える確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
白球が3個、黒球が5個、赤球が2個入った袋がある。以下のゲームを続けて$n$回続けて行う。
袋から球を1個取り出す。白球だった場合は1点を獲得する。黒球だった場合はさいころを投げて、出た目が3の倍数だった場合には1点、そうでない場合には0点を獲得する。赤球だった場合はコインを投げて、表が出た場合は2点、裏が出た場合は0点を獲得する。取り出した球は袋に戻さない。
(1) $n=2$のとき、総得点がちょうど3点となる確率を求めよ。
(2) $n=3$のとき、総得点がちょうど5点となる確率を求めよ。
(3) $n=3$のとき、総得点が4点以上となる確率を求めよ。
この動画を見る 
PAGE TOP