大学入試問題#284 同志社大学(2013) #定積分 - 質問解決D.B.(データベース)

大学入試問題#284 同志社大学(2013) #定積分

問題文全文(内容文):
0π6cos4θ dθ

出典:2013年同志社大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学
指導講師: ますただ
問題文全文(内容文):
0π6cos4θ dθ

出典:2013年同志社大学 入試問題
投稿日:2022.08.18

<関連動画>

大学入試問題#182 横浜国立大学 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(log xx)2dxを計算せよ

出典:横浜国立大学 入試問題
この動画を見る 

福田の数学〜魔方陣の基礎知識があると楽に解けるね〜慶應義塾大学2023年環境情報学部第3問(2)〜魔方陣と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
( 2 )まず、図 2 の 9 つのマスに、縦、横、斜めにならんだ 3 つの数の和がいずれも等しくなるように、相異なる 1 ~ 9 の正の整数を 1 つずっ割り当てる。複数の割り当て方が考えられるが、その 1 つを選び割り当てるものとする。この 9 つの数を、図 3 に示すように 3 つのサイコロの展開図に書き写し、図 4のように 3 つのサイコロを作成する。サイコロは振ると、等しい確率で目(書き写した数)が出るものとする。いま、 2 人のプレ ー ヤ ー が 3 つのサイコロから異なるものを 1 つずつ選び、そのサイコロを振り、出た目が大きい方が勝っとする。あなたの対戦相手が9 を含むサイコロを選んだとき、あなたがこのゲ ー ムに、より高確率に勝っために選ぶべきサイコロは、を含むサイコロである。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

【解けるかな?】等速円運動 二次試験対策【芝浦工大2021】

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#学校別大学入試過去問解説(数学)#芝浦工業大学#数学(高校生)#理科(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【芝浦工大2021】等速円運動 二次試験対策
-----------------
1.円錐の面とおもりが常に接している。
 糸の張力の大きさ[N]をg,L,m,θ,ωの中から必要なものを用いて表せ。

2.おもりの角速度がωc[rad/s]より大きいと、おもりは円錐面から離れて等速円運動をする。
 ωc[rad/s]g,L,m,θの中から必要なものを用いて表せ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)m=3の時を考える。n=1ならば、畑の数は常に3個で、1通りある。
n=2ならば、畑の数は3個、5個、6個で3通りある。n=3ならば、畑の数は
    通りある。n=10ならば、畑の数は    通りある。
(2)m=3n=3のとき、畑の数が8個になる植え方は    通りある。
(3)m=6のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。n=2のとき、
畑が8個である確率は        であり、畑が9個である確率は        であり、
畑が10個である確率は        である。n=3のとき、
畑が10個である確率をpとすると    である。

    の選択肢:
(a)p1100  (b)1200p<1100  (c)1500p<1200
(d)11000p<1500  (e)12000p<11000  (f)15000p<12000
(g)110000p<15000  (h)p<110000

2021上智大学理系過去問
この動画を見る 

【高校数学】岩手大学の積分の問題をその場で解説しながら解いてみた!毎日積分102日目~47都道府県制覇への道~【㊺岩手】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【岩手大学 2023】
(1) 不定積分x2x1dxを求めよ
(2) 次の曲線とx軸で囲まれた図形の面積を求めよ。
y=cos2x+12(π4x34π)
(3) 曲線y=x+1e2xx軸、y軸、および直線x=1で囲まれた図形をx軸のまわりに1回転してできる回転体の体積を求めよ。
この動画を見る 
PAGE TOP preload imagepreload image