問題文全文(内容文):
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。
$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}$
2021上智大学理系過去問
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。
$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}$
2021上智大学理系過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。
$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}$
2021上智大学理系過去問
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。
$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}$
2021上智大学理系過去問
投稿日:2021.09.08