福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。\\
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に\\
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に\\
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結\\
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、\\
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。\\
(1)m=3の時を考える。n=1ならば、畑の数は常に3個で、1通りある。\\
n=2ならば、畑の数は3個、5個、6個で3通りある。n=3ならば、畑の数は\\
\boxed{\ \ ク\ \ }通りある。n=10ならば、畑の数は\boxed{\ \ ケ\ \ }通りある。\\
(2)m=3でn=3のとき、畑の数が8個になる植え方は\boxed{\ \ コ\ \ }通りある。\\
(3)m=6のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り\\
あるが、それらすべてが等確率になるように植えることにする。n=2のとき、\\
畑が8個である確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}であり、畑が9個である確率は\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
畑が10個である確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。n=3のとき、\\
畑が10個である確率をpとすると\boxed{\ \ け\ \ }である。\\
\\
\\
\boxed{\ \ け\ \ }の選択肢:\\
(\textrm{a})p \geqq \frac{1}{100}  (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100}  (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}\\
(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500}  (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000}  (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}\\
(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000}  (\textrm{h})p \lt \frac{1}{10000}
\end{eqnarray}
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。\\
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に\\
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に\\
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結\\
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、\\
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。\\
(1)m=3の時を考える。n=1ならば、畑の数は常に3個で、1通りある。\\
n=2ならば、畑の数は3個、5個、6個で3通りある。n=3ならば、畑の数は\\
\boxed{\ \ ク\ \ }通りある。n=10ならば、畑の数は\boxed{\ \ ケ\ \ }通りある。\\
(2)m=3でn=3のとき、畑の数が8個になる植え方は\boxed{\ \ コ\ \ }通りある。\\
(3)m=6のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り\\
あるが、それらすべてが等確率になるように植えることにする。n=2のとき、\\
畑が8個である確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}であり、畑が9個である確率は\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
畑が10個である確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。n=3のとき、\\
畑が10個である確率をpとすると\boxed{\ \ け\ \ }である。\\
\\
\\
\boxed{\ \ け\ \ }の選択肢:\\
(\textrm{a})p \geqq \frac{1}{100}  (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100}  (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}\\
(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500}  (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000}  (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}\\
(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000}  (\textrm{h})p \lt \frac{1}{10000}
\end{eqnarray}
投稿日:2021.09.08

<関連動画>

確率 4STEP数A 137 条件付き確率1【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
ジョーカーを除く1組52枚のトランプから2枚のカードを同時に抜き出す。2枚のうちの少なくとも1枚はハートであることがわかっているとき、残りの1枚もハートである確率を求めよ。
この動画を見る 

【数A】場合の数:塗り分け! ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
この動画を見る 

【教えて鈴木先生がていねいに解説】場合の数と確率 4STEP数A 88,89,90,91 確率基本①

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
88 A,B,C,D,E,F,G,Hの8文字を無造作に1列に並べるとき、次のようになる確率を求めよ。
(1)両端がA,Bである。
(2)A,Bが隣り合う。
(3)AはBより左に、BはCより左にある。

89 男子6人、女子2人がくじ引きで席を決めて円卓を囲んで座るとき、次のようになる確率を求めよ。
(1)女子2人が隣り合う。
(2)女子2人が向かい合う。

90 A,B,C,Dの4人がじゃんけんを1回するとき、次の確率を求めよ。
(1)Aだけが勝つ確率
(2)1人だけが勝つ確率

91 3つのさいころを同時に投げるとき、次のような目が出る確率を求めよ。
(1)目の積が150
(2)目の積が18
(3)目の積が135以上
この動画を見る 

【高校数学】組合わせの性質の証明 1-10.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
組合わせの性質の証明についての説明動画です
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(3)〜さいころの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 3個のさいころを1回投げるとき、出た目の最大値が3となる確率は\\
\ \boxed{\ \ エ\ \ }\ であり、また、出た目の積が8となる確率は\ \boxed{\ \ オ\ \ }\ である。
\end{eqnarray}
この動画を見る 
PAGE TOP