【数Ⅱ】微分法と積分法:3次関数と接線の交点 - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:3次関数と接線の交点

問題文全文(内容文):
3次関数$y=2x^3 -3x^2 -12x$について、次の問いに答えよ。
(1) この関数のグラフCの$x=1$における接線$\ell$ の方程式を求めよ。
(2) $C$と$\ell$との接点以外の共有点のx座標を求めよ。
チャプター:

0:00 オープニングと問題説明
0:12 接線の求め方
2:53 ここからが本題!超裏技を紹介!
5:32 まとめ

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3次関数$y=2x^3 -3x^2 -12x$について、次の問いに答えよ。
(1) この関数のグラフCの$x=1$における接線$\ell$ の方程式を求めよ。
(2) $C$と$\ell$との接点以外の共有点のx座標を求めよ。
投稿日:2021.05.18

<関連動画>

甲南大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#甲南大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{\sqrt{ 3 }+i}{\sqrt{ 3 }-i}$

$Z+Z^2+Z^3+…+Z^{100}$

出典:2002年甲南大学 過去問
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 

ただの4次方程式 その2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^4+2x^2-400x=9991$
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の点A(a,b)を1つ固定し、曲線y=x^2上の点P(x,x^2)と点A\\
との距離の2乗をg(x)とおく。関数y=g(x)のグラフが区間(-\infty,\infty)において下に凸\\
となるための条件はb \leqq \boxed{\ \ ア\ \ }\ となることである。b \gt \boxed{\ \ ア\ \ }\ のときy=g(x)のグラフは\\
2つの変曲点をもち、そのx座標は\ \boxed{\ \ イ\ \ }\ 及び\ \boxed{\ \ ウ\ \ }\ である。\\
ただし\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }とする。また、関数y=g(x)が極小となるxがただ1つであるために\\
a,bが満たすべき条件をb \leqq F(a)と書くと、F(a)=\boxed{\ \ エ\ \ } である。\\
b= F(a)のとき、関数y=g(x)はx=\boxed{\ \ オ\ \ }において最小値をとる。\\
さらに、連立不等式x \geqq 0,\ y \geqq x^2が表す領域をDとするとき、\\
曲線y=F(x)のDに含まれる部分の長さLを求めると、L=\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

ヨビノリたくみ入試解説 2020一橋極限

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \lim_{x\to\infty}(\cos^2\sqrt{x+1}+\sin^2\sqrt x)=1$

2020一橋大過去問
この動画を見る 
PAGE TOP