【数Ⅱ】微分法と積分法:3次関数と接線の交点 - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:3次関数と接線の交点

問題文全文(内容文):
3次関数$y=2x^3 -3x^2 -12x$について、次の問いに答えよ。
(1) この関数のグラフCの$x=1$における接線$\ell$ の方程式を求めよ。
(2) $C$と$\ell$との接点以外の共有点のx座標を求めよ。
チャプター:

0:00 オープニングと問題説明
0:12 接線の求め方
2:53 ここからが本題!超裏技を紹介!
5:32 まとめ

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3次関数$y=2x^3 -3x^2 -12x$について、次の問いに答えよ。
(1) この関数のグラフCの$x=1$における接線$\ell$ の方程式を求めよ。
(2) $C$と$\ell$との接点以外の共有点のx座標を求めよ。
投稿日:2021.05.18

<関連動画>

【高校数学】  数Ⅱ-9  分数式の計算②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{x-5}{x-3}+\displaystyle \frac{2x-4}{x-3}$

②$\displaystyle \frac{x}{x+4}-\displaystyle \frac{2}{x-1}$

③$\displaystyle \frac{x+8}{x^2+x-2}+\displaystyle \frac{x-4}{x^2-x}$
この動画を見る 

#59数検1級1次「国立大の入試問題の代表的な題材」

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$を正の整数とするとき定積分
$\displaystyle \int_{0}^{1} (log_e\ x)^n\ dx$の値を$n$に関する式で表せ。

出典:数検1級1次
この動画を見る 

名古屋市立大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。

出典:2001年名古屋市立大学 過去問
この動画を見る 

一橋大 4次関数と接線・共有点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+x^3+ax^2$と直線$l$との共有点は2個で、$l$はそのうちの一方のみで$f(x)$に接している。
このような直線が存在する$a$の範囲は?

出典:1996年一橋大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-32 2次方程式の解と判別式⑤

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎aのを定数とするとき、方程式$ax^2+6x+a-8=0$の解の種類を判別しよう。
この動画を見る 
PAGE TOP