福田のおもしろ数学359〜nのn-7分の1乗が整数となる8以上のnを求める - 質問解決D.B.(データベース)

福田のおもしろ数学359〜nのn-7分の1乗が整数となる8以上のnを求める

問題文全文(内容文):
$nを8以上の整数とする。n^{\frac{1}{n-7}}が整数となるnをすべて求めて下さい。$
単元: #数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$nを8以上の整数とする。n^{\frac{1}{n-7}}が整数となるnをすべて求めて下さい。$
投稿日:2024.12.26

<関連動画>

大学入試問題#774「基本的な良問」 横浜国立大学(1998) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e-1} \displaystyle \frac{log(log(x+1))}{x+1} dx$

出典:1998年横浜国立大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第5問〜接線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点

$(\theta,\cos\theta)$における接線を$l$とする。

(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と

$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。

(2)曲線$C$と接線$l$、および$x$軸によって

囲まれた部分の面積が$1$であるとき、

$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

大学入試問題#416「工夫して計算」 早稲田大学2008 #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x$:実数
$x^3+\displaystyle \frac{1}{x^3}=52$を満たすとき
$x^4+\displaystyle \frac{1}{x^4}$の値を求めよ

出典:2008年早稲田大学 入試問題
この動画を見る 

福田の数学〜千葉大学2024年理系第6問〜最小値と方程式の解と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)=e^x+e^{-2x}$ について、次の問いに答えよ。
$(1)$ 関数 $f(x)$ の最小値を求めよ。
$(2)$ $f(x)=2$ となる $x$ の値をすべて求めよ。
$(3)$ $(2)$ で求めた $x$ の値のうち最小のものを $a_1$ 、最大のものを $a_2$ とする。 $y=f(x)$ のグラフ、 $x$ 軸、直線 $x=a_1$、直線 $x=a_2$ で囲まれる図形を $x$ 軸の周りに $1$ 回転してできる立体の体積を求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】y=1周りの回転体の体積 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、直線y=1の周りに1回転させてできる立体の体積Vを求めよ。

(1)$y=2\sin x$ $(0≦x≦π)$、$y=1$
(2)$x=\sqrt{x}$、$x=0$、$y=1 $




この動画を見る 
PAGE TOP