円と直角三角形 B - 質問解決D.B.(データベース)

円と直角三角形 B

問題文全文(内容文):
半径=5
BC=?
*図は動画内参照

東京学芸大学附属高校

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径=5
BC=?
*図は動画内参照

東京学芸大学附属高校

投稿日:2021.06.24

<関連動画>

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[1]。式の値の計算問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [1] 実数a,b,cがa+b+c=1\ldots①およびa^2+b^2+c^2=13\ldots②を満たしているとする。\\
(1)(a+b+c)^2を展開した式において、①と②を用いるとab+bc+ca=\boxed{\ \ アイ\ \ }\\
であることが分かる。\\
よって、(a-b)^2+(b-c)^2+(c-a)^2=\boxed{\ \ ウエ\ \ }である。\\
\\
(2)a-b=2\sqrt5 の場合に、(a-b)(b-c)(c-a)の値を求めてみよう。\\
b-c=x, c-a=yとおくと、x+y=\boxed{\ \ オカ\ \ }\sqrt5 である。また(1)の計算から\\
x^2+y^2=\boxed{\ \ キク\ \ }が成り立つ。これらより\\
(a-b)(b-c)(c-a)=\boxed{\ \ ケ\ \ }\sqrt5 である。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

【図でイメージする!】2次関数の最大値と最小値の問題はこう解く!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
2次関数の値の範囲と最大値・最小値
①$y=x^2-2x+1$を定義域(0 \leqq x \leqq 3)でグラフをかけ

②$y=2x^2-4x+1$について$-1 \leq z \leq 2$の範囲での最大値と最小値を求めよ

③$y=-3x^2-4x-1$について$1 \leq z \leq 3$の範囲での最大値と最小値を求めよ
この動画を見る 

平方根:代表的な無理数の暗記法~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根:代表的な無理数の暗記法~全国入試問題解法

$\sqrt{ 2 } = 1.41421356$ 一夜一夜に人見ごろ

$\sqrt{ 3 } = 1.7320508$ ...人なみにおごれや

$\sqrt{ 5 } = 2.2360679$ 富士山ろくオウム鳴く

$\sqrt{ 6 } = 2 2.4494897$... 二夜シクシク

$\sqrt{ 7 } = 2 2.6457513$... 変に虫いないさ

$\sqrt{ 8 } = 2 2.828427$… ニヤニヤ呼ぶな

$\sqrt{ 10 } = 3 3,1622776.$……… 人丸は三色に並ぶや

この動画を見る 

福田のわかった数学〜高校1年生032〜否定分の作り方(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 否定分の作り方(2)\\
次の関数f(x)についての命題を否定せよ。\\
\\
「N以上の全ての自然数nについてf(n) \leqq 2」\\
が成り立つような自然数Nが存在する。
\end{eqnarray}
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]右の図のように、\triangle ABCの外側に辺AB,BC,CAをそれぞれ1辺とする\\
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ\\
線分で結んだ図形を考える。以下において\\
BC=a, CA=b, AB=c\\
\angle CAB=A, \angle ABC=B, \angle BCA=C とする。\\
\\
(1)b=6, c=5, \cos A=\frac{3}{5}のとき、\sin A=\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}であり、\\
\triangle ABCの面積は\boxed{\ \ タチ\ \ }、\triangle AIDの面積は\boxed{\ \ ツテ\ \ }である。\\
\\
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。\\
このとき、S_1-S_2-S_3 は\\
・0° \lt A \lt 90°のとき\boxed{\ \ ト\ \ } ・A=90°のとき\boxed{\ \ ナ\ \ }\\
・90° \lt A \lt 180°のとき\boxed{\ \ ニ\ \ }\\
\\
\boxed{\ \ ト\ \ }~\boxed{\ \ ニ\ \ }の解答群\\
⓪0である  ①正の値である  ②負の値である  ③正の値も負の値もとる\\
\\
(3)\triangle AID,\triangle BEF,\triangle CGHの面積をそれぞれT_1,T_2,T_3とする。\\
このとき、\boxed{\ \ ヌ\ \ }である。\\
\\
\boxed{\ \ ヌ\ \ }の解答群\\
⓪a \lt b \lt cならばT_1 \gt T_2 \gt T_3\\
①a \lt b \lt cならばT_1 \lt T_2 \lt T_3\\
②Aが鈍角ならばT_1 \lt T_2 かつT_1 \lt T_3\\
③a,b,cの値に関係なく、T_1 = T_2 = T_3\\
\\
(4)\triangle ABC,\triangle AID,\triangle BEF,\triangle CGHのうち、外接円の半径が最も小さいもの\\
を求める。0° \lt A \lt 90°のとき、ID \boxed{\ \ ネ\ \ } BCであり、\\
(\triangle AIDの外接円の半径)\boxed{\ \ ノ\ \ }(\triangle ABCの外接円の半径)\\
であるから、外接円の半径が最も小さい三角形は\\
0° \lt A \lt B \lt C \lt 90°のとき、\boxed{\ \ ハ\ \ }である。\\
0° \lt A \lt B \lt 90° \lt Cのとき、\boxed{\ \ ヒ\ \ }である。\\
\\
\boxed{\ \ ネ\ \ }、\boxed{\ \ ノ\ \ }の解答群\\
⓪\lt   ①=   ②\gt\\
\\
\boxed{\ \ ハ\ \ }、\boxed{\ \ ヒ\ \ }の解答群\\
⓪\triangle ABC   ①\triangle AID   ②\triangle BEF   ③\triangle CGH\\
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 
PAGE TOP