大学入試問題#9 獨協大学(2021) 微分法の応用 - 質問解決D.B.(データベース)

大学入試問題#9 獨協大学(2021) 微分法の応用

問題文全文(内容文):
$a:$定数
$\displaystyle \int_{0}^{x}f(t)dt+\displaystyle \int_{0}^{1}x^2f(t)dt=x^2+3x+a$を満たすとき
$f(x)$を求めよ。

出典:2021年獨協大学 入試問題
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a:$定数
$\displaystyle \int_{0}^{x}f(t)dt+\displaystyle \int_{0}^{1}x^2f(t)dt=x^2+3x+a$を満たすとき
$f(x)$を求めよ。

出典:2021年獨協大学 入試問題
投稿日:2021.09.14

<関連動画>

#福島大学(2021) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos\ x\ log(\sin\ x) dx$

出典:2021年福島大学
この動画を見る 

大学入試問題#626「一直線だが、最後まで気を抜かない」 横浜市立大学医学部(2007)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$n$:自然数
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin\{(2n+1)\theta\}\cos\theta d\theta$

出典:2007年横浜市立大学 入試問題
この動画を見る 

大学入試問題#244 南山大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$a$:正の定数
$\displaystyle \int_{-a}^{a}\displaystyle \frac{|x|e^x}{(1+e^x)^2}dx$を計算せよ

出典:2014年南山大学 入試問題
この動画を見る 

大学入試問題#480「計算量が多いのかもしれません」  山形大学(2016) #微積の応用②

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$微分可能な関数
$e^{-x}f(x)+\displaystyle \int_{0}^{x} e^{-t}f(t)dt=1+e^{-2x}(3\ \sin\ x-\cos\ x)$を満たす$f(x)$を求めよ

出典:2016年山形大学 入試問題
この動画を見る 

【誘導あり:概要欄】大学入試問題#357「この大問は落とせないかな~~」 横浜国立大学2010 #定積分 #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \lt x \lt \pi$のとき
$\sin\ x-x\cos\ x \gt 0$を示せ

(2)
$0 \lt a \lt 1$
$I=\displaystyle \int_{0}^{\pi} |\sin\ x-ax| dx$を最小にする$a$の値を求めよ。

出典:2010年横浜国立大学 入試問題
この動画を見る 
PAGE TOP