重積分⑥-1【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑥-1【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
曲面$Z=4-x^2$と平面x+y=2,3つの座標平面で囲まれる立体の体積Vを求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
曲面$Z=4-x^2$と平面x+y=2,3つの座標平面で囲まれる立体の体積Vを求めよ。
投稿日:2020.10.31

<関連動画>

数学「大学入試良問集」【2−2 高次方程式と解】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\alpha=\displaystyle \frac{3+\sqrt{ 7 }\ i}{2}$とする。
ただし、$i$は虚数単位である。次の問いに答えよ。
(1)
$\alpha$を解にもつような2次方程式$x^2+px+q=0(p,q$は整数)を求めよ。

(2)
整数$a,b,c$を係数とする3次方程式$x^3+ax^2+bx+c=0$について、解の1つは$\alpha$であり、また$0 \leqq x \leqq 1$の範囲に実数解を1つもつとする。
このような整数の組$(a,b,c)$を全て求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題015〜東京大学2016年度理系数学第4問〜複素数平面上の三角形が鋭角三角形になる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
zを複素数とする。複素数平面上の3点$A(I),B(z),C(z^2)$が
鋭角三角形をなすようなzの範囲を定め、図示せよ。

2016東京大学理系過去問
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(4)〜2直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)実数$a$は定数とする。

座標平面上の$2$つの直線$(a+1)x+ay=1$

$ax+(a+2)y=2$がただ$1$つの交点を持つための

$a$の条件は$\boxed{カ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第2問〜確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 袋が2つ(袋1と袋2)および赤玉2個、白玉4個が用意されている。それぞれの袋に玉が3個ずつ入った状態として、次の3つがあり得る。
状態A:袋1に入っている赤玉が0個である状態
状態B:袋1に入っている赤玉が1個である状態
状態C:袋1に入っている赤玉が2個である状態
上記の各状態に対して、次の2段階からなる操作Tを考える。
操作T:袋1から玉を1個無作為に取り出し、それを袋2に入れる。次に、袋2から玉を1個無作為に取り出し、それを袋1に入れる。
(1)X,YをそれぞれA,B,Cのいずれかとする。状態Xに対し操作Tを1回施した結果、状態Yになる確率をP(X→Y)で表す。このとき、
P(A→A)=$\boxed{\ \ (あ)\ \ }$, P(A→B)=$\boxed{\ \ (い)\ \ }$, P(B→A)=$\boxed{\ \ (う)\ \ }$,
P(B→B)=$\boxed{\ \ (え)\ \ }$, P(C→A)=$\boxed{\ \ (お)\ \ }$, P(C→B)=$\boxed{\ \ (か)\ \ }$ である。
(2)以下、$n$を自然数とし、状態Bから始めて操作Tを繰り返し施す。操作Tを$n$回施し終えたとき、状態Aである確率を$a_n$、状態Bである確率を$b_n$、状態Cである確率を$c_n$とする。$n$≧2 とするとき、$a_n$,$b_n$,$c_n$と$a_{n-1}$,$b_{n-1}$,$c_{n-1}$の間には次の関係式が成り立つ。
$\left\{\begin{array}{1}
a_n=\boxed{\ \ (あ)\ \ }a_{n-1}+\boxed{\ \ (う)\ \ }b_{n-1}+\boxed{\ \ (お)\ \ }c_{n-1}\\
b_n=\boxed{\ \ (い)\ \ }a_{n-1}+\boxed{\ \ (え)\ \ }b_{n-1}+\boxed{\ \ (か)\ \ }c_{n-1}\\
\end{array}\right.$
したがって$b_n$と$b_{n-1}$の間には次の関係式が成り立つことが分かる。
$b_n$=$\boxed{\ \ (き)\ \ }b_{n-1}$+$\boxed{\ \ (く)\ \ }$
これより、$n$≧1 に対して$b_n$を$n$の式で表すと
$b_n$=$\boxed{\ \ (け)\ \ }$+$\boxed{\ \ (こ)\ \ }(\boxed{\ \ (さ)\ \ })^n$
となる。さらに$d_n$=$\displaystyle\frac{a_n}{(\boxed{\ \ (あ)\ \ })^n}$とおくとき、$d_n$を$n$の式で表すと
$d_n$=$\boxed{\ \ (し)\ \ }\left\{(\boxed{\ \ (す)\ \ })^n-(\boxed{\ \ (せ)\ \ })^n\right\}$
となる。
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(3)〜n進法

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
(3)$n$進法で$2021_{(n)}$と表される数が、素数であるような$n$の最小値を十進法で表すと$\boxed{\ \ コ\ \ }$となり、合成数である(素数ではない)ような$n$の最小値を十進法で表すと$\boxed{\ \ サ\ \ }$となる。
この動画を見る 
PAGE TOP