大学入試問題#283 早稲田大学(2013) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#283 早稲田大学(2013) #整数問題

問題文全文(内容文):
$5 \leqq p$:素数
$p^3$を$p-4$で割った余りが4のとき$p$の値を求めよ。

出典:2013年早稲田大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$5 \leqq p$:素数
$p^3$を$p-4$で割った余りが4のとき$p$の値を求めよ。

出典:2013年早稲田大学 入試問題
投稿日:2022.08.17

<関連動画>

福田の数学〜神戸大学2023年理系第1問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$を
$f(x)$=$\left\{\begin{array} \\
\frac{1}{2}x+\frac{1}{2} (x≦ 1)\\
2x-1 (x \gt 1)\\
\end{array}\right.$
で定める。aを実数とし、数列$\left\{a_n\right\}$を
$a_1$=a, $a_{n+1}$=$f(a_n)$ (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)すべての実数xについて$f(x)$≧x が成り立つことを示せ。
(2)a≦1のとき、すべての正の整数nについて$a_n$≦1が成り立つことを示せ。
(3)数列$\left\{a_n\right\}$の一般項をnとaを用いて表せ。

2023神戸大学理系過去問
この動画を見る 

神戸大(医)整式 有理数と無理数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の無理数 $X,Y$は有理数

$X=a^3+3a^2-14a+6$
$Y=a^2-2a$

(1)
$x^3+3x^2-14x+6$を$x^2-2x$で割った余りと商

(2)
$X,Y,a$の値


出典:神戸大学 過去問
この動画を見る 

#宮崎大学(2023) #不定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}dx$

出典:2023年宮崎大学
この動画を見る 

2023東工大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3-x)^2(y^3-y)=86400$
整数$x,y$を求めよ.

2023東工大過去問
この動画を見る 

大学入試問題#897「解法の迷走」 #北海道大学(2024)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{x^2-x+1}{x^2+x+1}$
が整数となるような実数$x$をすべて求めよ。

出典:2024年北海道大学後期
この動画を見る 
PAGE TOP