最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第1問〜三角関数、指数対数関数、図形と方程式 - 質問解決D.B.(データベース)

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第1問〜三角関数、指数対数関数、図形と方程式

問題文全文(内容文):
${\large第1問}$
[1](1)$0 \leqq \theta \lt 2\pi$のとき
$\sin\theta \gt \sqrt3\cos\left(\theta-\displaystyle \frac{\pi}{3}\right)$ $\cdots$①
となる$\theta$の値の範囲を求めよう。
加法定理を用いると

$\sqrt3\cos\left(\theta-\frac{\pi}{3}\right)=$$\displaystyle\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }}\cos\theta+\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ イ\ \ }}\sin\theta$

である。よって、三角関数の合成を用いると、①は

$\sin\left(\theta+\displaystyle\frac{\pi}{\boxed{\ \ エ\ \ }}\right) \lt 0$

と変形できる。したがって、求める範囲は

$\displaystyle\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\pi \lt \theta \lt \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi$

である。

(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$とし、$k$を実数とする。$\sin\theta$と$\cos\theta$は$x$の2次方程式
$25x^2-35x+k=0$の解であるとする。このとき、解と係数の関係に
より$\sin\theta+\cos\theta$と$\sin\theta\cos\theta$の値を考えれば、$k=\boxed{\ \ ケコ\ \ }$で
あることがわかる。

さらに、$\theta$が$\sin\theta \geqq \cos\theta$を満たすとすると、$\sin\theta=\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }},$
$\cos\theta=\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$である。このとき、$\theta$は$\boxed{\ \ ソ\ \ }$を満たす。
$\boxed{\ \ ソ\ \ }$に当てはまるものを、次の⓪~⑤のうちから一つ選べ。
⓪$0 \leqq \theta \lt \displaystyle\frac{\pi}{12}$

①$\displaystyle\frac{\pi}{12} \leqq \theta \lt \displaystyle\frac{\pi}{6}$

②$\displaystyle\frac{\pi}{6} \leqq \theta \lt \displaystyle\frac{\pi}{4}$

③$\displaystyle\frac{\pi}{4} \leqq \theta \lt \displaystyle\frac{\pi}{3}$

④$\displaystyle\frac{\pi}{3} \leqq \theta \lt \displaystyle\frac{5}{12}\pi$

⑤$\displaystyle\frac{5}{12}\pi \leqq \theta \leqq \displaystyle\frac{\pi}{2}$


[2](1)$t$は正の実数であり、$t^{\displaystyle\frac{1}{3}}-t^{-\displaystyle\frac{1}{3}}=-3$を満たすとする。このとき

$t^{\displaystyle\frac{2}{3}}+t^{-\displaystyle\frac{2}{3}}=\boxed{\ \ タチ\ \ }$

である。さらに

$t^{\frac{1}{2}}+t^{-\frac{1}{2}}=\sqrt{\boxed{\ \ ツテ\ \ }}, $$t-t^{-1}=\boxed{\ \ トナニ\ \ }$

である。

(2)$x,y$は正の実数とする。連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_3(x\sqrt y) \leqq 5 \cdots②\\
\log_{81}\frac{y}{x^3} \leqq 1 \cdots③
\end{array}
\right.
\end{eqnarray}$

について考える。
$X=\log_3x,$ $Y=\log_3y$とおくと、②は
$\boxed{\ \ ヌ\ \ }\ X+Y \leqq \boxed{\ \ ネノ\ \ }$ $\cdots$④
と変形でき、③は
$\boxed{\ \ ハ\ \ }\ X-Y \geqq \boxed{\ \ ヒフ\ \ }$ $\cdots$⑤
と変形できる。
$X,Y$が④と⑤を満たすとき、$Y$の取り得る最大の整数の値は
$\boxed{\ \ ヘ\ \ }$である。また、$x,y$が②,③と$\log_3y=\boxed{\ \ ヘ\ \ }$を同時に
満たすとき、xの取り得る最大の整数の値は$\boxed{\ \ ホ\ \ }$である。

2020センター試験過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#指数関数と対数関数#指数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1](1)$0 \leqq \theta \lt 2\pi$のとき
$\sin\theta \gt \sqrt3\cos\left(\theta-\displaystyle \frac{\pi}{3}\right)$ $\cdots$①
となる$\theta$の値の範囲を求めよう。
加法定理を用いると

$\sqrt3\cos\left(\theta-\frac{\pi}{3}\right)=$$\displaystyle\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }}\cos\theta+\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ イ\ \ }}\sin\theta$

である。よって、三角関数の合成を用いると、①は

$\sin\left(\theta+\displaystyle\frac{\pi}{\boxed{\ \ エ\ \ }}\right) \lt 0$

と変形できる。したがって、求める範囲は

$\displaystyle\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\pi \lt \theta \lt \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi$

である。

(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$とし、$k$を実数とする。$\sin\theta$と$\cos\theta$は$x$の2次方程式
$25x^2-35x+k=0$の解であるとする。このとき、解と係数の関係に
より$\sin\theta+\cos\theta$と$\sin\theta\cos\theta$の値を考えれば、$k=\boxed{\ \ ケコ\ \ }$で
あることがわかる。

さらに、$\theta$が$\sin\theta \geqq \cos\theta$を満たすとすると、$\sin\theta=\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }},$
$\cos\theta=\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$である。このとき、$\theta$は$\boxed{\ \ ソ\ \ }$を満たす。
$\boxed{\ \ ソ\ \ }$に当てはまるものを、次の⓪~⑤のうちから一つ選べ。
⓪$0 \leqq \theta \lt \displaystyle\frac{\pi}{12}$

①$\displaystyle\frac{\pi}{12} \leqq \theta \lt \displaystyle\frac{\pi}{6}$

②$\displaystyle\frac{\pi}{6} \leqq \theta \lt \displaystyle\frac{\pi}{4}$

③$\displaystyle\frac{\pi}{4} \leqq \theta \lt \displaystyle\frac{\pi}{3}$

④$\displaystyle\frac{\pi}{3} \leqq \theta \lt \displaystyle\frac{5}{12}\pi$

⑤$\displaystyle\frac{5}{12}\pi \leqq \theta \leqq \displaystyle\frac{\pi}{2}$


[2](1)$t$は正の実数であり、$t^{\displaystyle\frac{1}{3}}-t^{-\displaystyle\frac{1}{3}}=-3$を満たすとする。このとき

$t^{\displaystyle\frac{2}{3}}+t^{-\displaystyle\frac{2}{3}}=\boxed{\ \ タチ\ \ }$

である。さらに

$t^{\frac{1}{2}}+t^{-\frac{1}{2}}=\sqrt{\boxed{\ \ ツテ\ \ }}, $$t-t^{-1}=\boxed{\ \ トナニ\ \ }$

である。

(2)$x,y$は正の実数とする。連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_3(x\sqrt y) \leqq 5 \cdots②\\
\log_{81}\frac{y}{x^3} \leqq 1 \cdots③
\end{array}
\right.
\end{eqnarray}$

について考える。
$X=\log_3x,$ $Y=\log_3y$とおくと、②は
$\boxed{\ \ ヌ\ \ }\ X+Y \leqq \boxed{\ \ ネノ\ \ }$ $\cdots$④
と変形でき、③は
$\boxed{\ \ ハ\ \ }\ X-Y \geqq \boxed{\ \ ヒフ\ \ }$ $\cdots$⑤
と変形できる。
$X,Y$が④と⑤を満たすとき、$Y$の取り得る最大の整数の値は
$\boxed{\ \ ヘ\ \ }$である。また、$x,y$が②,③と$\log_3y=\boxed{\ \ ヘ\ \ }$を同時に
満たすとき、xの取り得る最大の整数の値は$\boxed{\ \ ホ\ \ }$である。

2020センター試験過去問
投稿日:2020.01.20

<関連動画>

簡単すぎた

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 5^x=0.5^y=10000$である.
$\dfrac{1}{x}-\dfrac{1}{y}$はいくつであるか求めよ.
この動画を見る 

学習院大 三次関数と放物線の共通接線の本数

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$と$y=x^2+a$の共通接線の数を求めよ

出典:2003年学習院大学 過去問
この動画を見る 

数検準1級2次過去問(1番 指数対数の不等式)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#対数関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
$2^xlog_2x+2^{x+2}-4log_2x-16 < 0$
をみたすxの値の範囲を求めよ。
この動画を見る 

山形(医他)4次関数と接線 積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89山形大学過去問題
$f(x)=x^4-6a^2x^2+5a^4$ (a>0)
(a,0)における接線l。
f(x)とlとで囲まれる面積
この動画を見る 

【高校数学】数Ⅲ-102 指数関数の導関数②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=e^x \log x$

②$y=\dfrac{e^x}{e^x+e^{-x}}$

③$y=e^x \cos x$

④$y=x^{\sin x} (x \gt 0)$
この動画を見る 
PAGE TOP