解けるように作られた連立方程式 - 質問解決D.B.(データベース)

解けるように作られた連立方程式

問題文全文(内容文):
実数$x,y,z$を求めよ.

$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+2y+3z)^2=14(x^2+y^2+z^2) \\
x+y+z=18
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y,z$を求めよ.

$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+2y+3z)^2=14(x^2+y^2+z^2) \\
x+y+z=18
\end{array}
\right.
\end{eqnarray}$
投稿日:2023.07.30

<関連動画>

【中2 数学】  2-①⑨(旧) 連立方程式の利用(みはじ編)

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用(みはじ編)
A地点からB地点を通ってC地点まで170kmの道のりを、
A地点からB地点まで時速30km、
B地点からC地点まで時速70kmで行くと、
3時間かかりました。
AからB、BからCまでの道のりは?
※図は動画内参照
この動画を見る 

【テスト対策 中2】5章-1

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\angle x$の大きさを求めなさい。

①$AB=AC,BD$は$\angle ABC$の二等分線

②$AD=BD,BC /\!/ DE,BE$は$\angle ABC$の二等分線

③$AB=AC$
$AD=AE$

④$AB=AC$
$\ell /\!/ m$

図は動画内参照
この動画を見る 

【ケアレスミスをなくす3分間!】連立方程式:久留米大学附設高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附設高等学校
【連立方程式】
aの値を求めよ。
$\begin{eqnarray}

\begin{cases}
8x-y=5 & \\
ax+5y=7 &
\end{cases}
\end{eqnarray}$
の解を$x=m,y=n$とするとき
$2m-n=1$が成り立つ
この動画を見る 

【高校受験対策】数学-死守23

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#立体図形#立体切断#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-5-(-9)$を計算せよ.

②$- 2 ^ 2 \times 3$を計算せよ.

③$xy ^ 2 \times 6y \div 3xy$を計算せよ.

④$(x - 7)(x - 4) + 8x$を計算せよ.

⑤1次方程式$x + 4 = 5(2x - 1)$を解け.

⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.

⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.

⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.

⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.

⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.

ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.

⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.

図は動画内参照
この動画を見る 

クラス替えで好きな人と同じになる確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
クラス替えで好きな人と同じクラスになる確率 解説動画です
この動画を見る 
PAGE TOP