数学「大学入試良問集」【19−13媒介変数表示のグラフと面積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−13媒介変数表示のグラフと面積】を宇宙一わかりやすく

問題文全文(内容文):
媒介変数$t$を用いて$x=1-\cos\ t,y=1+t\ \sin\ t+\cos\ t(0 \leqq t \leqq \pi)$と表される座標平面上の曲線を$C$とする。
このとき、次の各問いに答えよ。

(1)$y$の最大値と最小値を求めよ。
(2)曲線$C,x$軸および$y$軸で囲まれる部分の面積$S$を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
媒介変数$t$を用いて$x=1-\cos\ t,y=1+t\ \sin\ t+\cos\ t(0 \leqq t \leqq \pi)$と表される座標平面上の曲線を$C$とする。
このとき、次の各問いに答えよ。

(1)$y$の最大値と最小値を求めよ。
(2)曲線$C,x$軸および$y$軸で囲まれる部分の面積$S$を求めよ。
投稿日:2021.09.13

<関連動画>

【数Ⅲ-149】定積分①(基本編)

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分①・基本編)

Q.次の定積分を求めよ

①$\int_1^3 (x) dx$

➁$\int_{-2}^1 3x^4 dx$

③$\int_{0}^1 2^t dt$

④$\int_{2}^{2}\frac{sinx}{x^3}dx$

⑤$\int_{0}^{\frac{\pi}{4}}6sin2xdx$

⑥$\int_{0}^{\pi} sin^2xdx$
この動画を見る 

#高専_3#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (e^x-e^{-x})^2(e^x+e^{-x}) dx$
この動画を見る 

福田の数学〜部分積分と極限のコンボ〜明治大学2023年全学部統一Ⅲ第2問〜部分積分と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $t$>0 に対して、次の2つの定積分を考える。
$I$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\sin xdx$, $J$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx$
部分積分を用いれば$I$=$\boxed{\ \ ア\ \ }$-$tJ$, $J$=$\boxed{\ \ イ\ \ }$+$tI$ が成り立つことが分かるので、
$I$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$, $J$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ エ\ \ }}$
を得る。したがって、$\displaystyle\lim_{t \to \infty}\frac{\log\boxed{\ \ エ\ \ }}{t}$=0 を用いれば、
$\displaystyle\lim_{t \to \infty}\frac{1}{t}\log\left(\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx-\frac{t}{\boxed{\ \ エ\ \ }}\right)$=$\boxed{\ \ カ\ \ }$
となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ ウ\ \ }$の解答群
⓪-1 ①1 ②2-$\pi$ ③$\pi$ ④1-$t$ ⑤1+$t$ 
⑥1-$t^2$ ⑦1+$t^2$ ⑧$-e^{-\frac{\pi}{2}t}$ ⑨$e^{-\frac{\pi}{2}t}$ 
$\boxed{\ \ ウ\ \ }$、$\boxed{\ \ オ\ \ }$の解答群
⓪$t$ ①1 ②-1$-te^{-\frac{\pi}{2}t}$ ③-1$+te^{-\frac{\pi}{2}t}$ ④1$-te^{-\frac{\pi}{2}t}$ 
⑤1$+te^{-\frac{\pi}{2}t}$ ⑥-$t$-$e^{-\frac{\pi}{2}t}$ ⑦-$t$+$e^{-\frac{\pi}{2}t}$ ⑧$t$-$e^{-\frac{\pi}{2}t}$ ⑨$t$+$e^{-\frac{\pi}{2}t}$
$\boxed{\ \ カ\ \ }$の解答群
⓪0 ①$-\frac{\pi}{2}$ ②$-\frac{\pi}{3}$ ③$-\frac{\pi}{4}$ ④$-\frac{\pi}{6}$ ⑤$-\frac{\pi}{12}$ ⑥$\frac{\pi}{6}$ 
⑦$\frac{\pi}{4}$ ⑧$\frac{\pi}{3}$ ⑨$\frac{\pi}{2}$ 
この動画を見る 

ヨビノリのマンデー積分をぶっ飛ばせ!刺客は本人

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ

出典:2019年九州大学 過去問
この動画を見る 

大学入試問題#528「正面突破はしたくない」 福島県立医科大学② 改 (2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sin^4x\ \cos^22x\ dx$

出典:2021年福島県立医科大学 入試問題
この動画を見る 
PAGE TOP