福田の数学〜東京大学2023年理系第1問〜定積分と不等式 - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第1問〜定積分と不等式

問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
単元: #大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
投稿日:2023.02.26

<関連動画>

福田の一夜漬け数学〜数列・漸化式(6)その他色々〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて$a_1=1$とする)
①$a_{n+1}=\displaystyle \frac{a_n}{4a_n-1}$

②$a_{n+1}=2\displaystyle \sqrt{a_n}$

③$a_{n+1}=2(n+1)a_n$

④$a_{n+1}=\displaystyle \frac{4a_n+8}{a_n+6}$
この動画を見る 

横浜市立(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$,$a_{n+2}-5a_{n+1}+6a_n-6n=0$である.
一般項を求めよ.

横浜市立(医)過去問
この動画を見る 

群馬大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=15$であり,$n$を自然数とする.
$a_n-2a_{n-1}+4^n-1$

(1)$a_n$を$n$の式で表せ.
(2)$\displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{a_n}$

1992群馬大(医)過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

お茶の水女子大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^2-6x+2=0$の2つの解を$\alpha,\beta$
$A_{n}=(\alpha^{-n}+\beta^{-n})(\alpha+\beta)^n$

(1)
$A_{1},A_{2}$の値を求めよ

(2)
$A_{n}$はすべての自然数$n$について整数であることを示せ

出典:2009年お茶の水女子大学 過去問
この動画を見る 
PAGE TOP