福田の数学〜東京大学2023年理系第1問〜定積分と不等式 - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第1問〜定積分と不等式

問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
単元: #大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
投稿日:2023.02.26

<関連動画>

福田の数学〜浜松医科大学2022年医学部第4問〜確率漸化式と誤った答案に対する指摘

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 次の問題\hspace{310pt}\\
問題\\
表面と裏面が出る確率がそれぞれであるコインを投げる試行を繰り返し、同\\
じ面が3回連続して出た時点で試行を終了する。n回投げ終えた段階で試行が\\
終了する確率 p_nを求めよ。\\
に対する次の答案Aについて以下の問いに答えよ。\\
(1) もし答案Aに誤りがあれば誤りを指摘し、その理由を述べよ。ただし、すでに\\
指摘してある誤った結論から論理的に導き出した結論を誤りとして指摘する必要\\
はない。誤りがないときは「誤りなし」と答えよ。\\
(2) 答案Aで導かれたp_nと正解のp_nとで値が異なるとき、値が異なる最小のnを\\
求め、そのnに対する正解のpnの値を答えよ。そのようなnがないときは\\
「すべて一致する」と答えよ。\\
\\
答案A\\
自然数nに対して、コインをn回投げ終えた段階で、その後最短で試行が終了するために\\
必要な回数がk回(k \geqq 0)である確率をp_n(k)とする。このとき、\\
kは0,1,2のいずれかであるから、確率の総和は\\
p_n(0)+p_n(1)+p_n(2)=1\\
である。また、p_n(0)=p_n,p_{n+1}(0)=\frac{1}{2}p_n(1),p_{n+2}(0)=\frac{1}{4}p_n(2) であるから漸化式\\
p_n+2p_{n+1}+4p_{n+2}=1 (n \geqq 1)\\
を得る。ここで\frac{1}{7}+\frac{2}{7}+\frac{4}{7}=1なので、q_n=2^n(p_n-\frac{1}{7})とすれば\\
q_n+q_{n+1}+q_{n+2}=0\\
である。よってn \geqq 4に対して\\
q_n=-q_{n-1}-q_{n-2}=(q_{n-2}+q_{n-3})-q_{n-2}=q_{n-3}\\
が成立する。以上より、\\
Q(x)=
\left\{
\begin{array}{1}q_1 (nを3で割った時の余りが1のとき)\\
q_2 (nを3で割った時の余りが2のとき)\\
q_3      (nが3で割り切れるとき)\\
\end{array}
\right.\\
\\
とすれば求める確率は\\
p_n=\frac{q_n}{2^n}+\frac{1}{7}=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)\\
である。また最初の2項は定義よりp_1=p_2=0でありp_nの漸化式でn=1とすれば\\
p_1+2p_2+4p_3=1 であるからp_3=\frac{1}{4}である。さらに\\
q_1=-\frac{2}{7}, q_2=-\frac{4}{7}, q_3=\frac{6}{7}\\
\\
である。したがって\\
p_1=p_2=0, p_3=\frac{1}{4}, p_n=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)\\
となる。
\end{eqnarray}

2022浜松医科大学医学部過去問
この動画を見る 

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る 

2つの解法レピュニット数の和

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
和を求めよ.

$1+11+111+・・・・\underbrace{111・・・・1}_{n桁}$
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第3問〜漸化式の図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (1)三角形ABCの内接円が辺ABと接する点をPとし、\hspace{150pt}\\
辺BCと接する点をQとし、辺CAと接する点をRとする。\\
\angle Aの大きさをθとすると、\angle APR=\boxed{\ \ ア\ \ }であり、\angle PQR=\boxed{\ \ ア\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }の解答群\\
⓪0\ \ \ ①\frac{\pi}{2}\ \ \ ②θ\ \ \ ③\frac{θ}{2}\ \ \ ④\frac{\pi}{2}-θ\ \ \ \\ ⑤\frac{\pi-θ}{2}\ \ \ ⑥\pi-\frac{θ}{2}\ \ \ ⑦\pi-θ\ \ \ ⑧\frac{\pi-3θ}{2}\ \ \ ⑨\frac{\pi}{2}-3θ\ \ \ \\
\\
(2)三角形T_1の3つの角のうち、角の大きさが最小のものは\frac{\pi}{6}で、\\
最大のものは\frac{\pi}{2}であるとする。n=1,\ 2,\ 3,\ ...について、三角形T_nの内接円をO_nとし、\\
T_nとO_nとが接する3つの点を頂点とするような三角形をT_{n+1}とする。\\
このとき、三角形T_2の3つの角のうち、角の大きさが最小のものは\frac{\pi}{\boxed{\ \ イ\ \ }}\ で、\\
最大のものは\frac{\boxed{\ \ ウ\ \ }\ \pi}{\boxed{\ \ エオ\ \ }}\ である。n=1,\ 2,\ 3,\ ...について、三角形T_nの3つの角のうち、\\
角の大きさが最小のものをa_nとし、最大のものをb_nとする。三角形T_{n+1}について、\\
a_{n+1}=\boxed{\ \ カ\ \ },\ \ \ b_{n+1}=\boxed{\ \ キ\ \ }\\
と表せる。この式より\\
a_n+b_n=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\pi,\ \ \ b_n-a_n=\frac{\pi}{\boxed{\ \ コ\ \ }・\boxed{\ \ サ\ \ }^{n-1}}\\
であり、a_n=\frac{\pi}{\boxed{\ \ シ\ \ }}(1-\frac{1}{\boxed{\ \ ス\ \ }^n}) \ \ \ \ \ \ \ である。\\
\\
\boxed{\ \ カ\ \ }、\boxed{\ \ キ\ \ }の解答群\\
⓪\frac{a_n}{2}\ \ \ ①\frac{b_n}{2}\ \ \ ②\frac{\pi}{2}-a_n\ \ \ ③\frac{\pi}{2}-b_n\ \ \ ④\frac{\pi-a_n}{2}\ \ \ \\ ⑤\frac{\pi-b_n}{2}\ \ \ ⑥\pi-\frac{a_n}{2}\ \ \ ⑦\pi-\frac{b_n}{2}\ \ \ ⑧\pi-a_n\ \ \ ⑨\pi-b_n\ \ \ \\
\end{eqnarray}

2022明治大学全統過去問
この動画を見る 

三重大 逆 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}

(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ

(2)
$S_{n+1}$を$a_{n}$の1次式で表せ

出典:1996年三重大学 過去問
この動画を見る 
PAGE TOP