福田の数学〜東京大学2023年理系第1問〜定積分と不等式 - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第1問〜定積分と不等式

問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
単元: #大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
投稿日:2023.02.26

<関連動画>

信州大(医)変な数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{2n-1}=n,a_{2n}=a_{n}(n=1,2,3…)$

(1)
$a_{24}$を求めよ

(2)
$a_{1}~a_{1000}$の中に6はいくつあるか。

出典:2010年信州大学医学部 過去問
この動画を見る 

滋賀医科大 複雑な問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!=2^{an}m(n \geqq 2,m$奇数$)$

(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ


(2)
$a_{2n}-a_n$を$n$で表せ


(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ


(4)
$a_n \lt n$を表せ


(5)
$\sqrt[ n ]{ n! }$は無理数 示せ

出典:滋賀医科大学 過去問
この動画を見る 

虚数単位の入った漸化式 学習院大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数C#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019学習院大学過去問題
$Z_1=1$
$Z_{n+1}=iZ_n+2$
(1)$Z_{2019}$
(2)$Z_n$が通る円の中心と半径
この動画を見る 

2023にしたかったのだけど‥‥

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt5+\sqrt7)^{2022}$の1の位の数を求めよ.
この動画を見る 

【漸化式ニガテな人は見て!】漸化式の見方の基礎はこれだけです〔数学、高校数学〕

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
以下の漸化式で表される数列の一般項を求めよ。
(1)$a_{n+1}=a_n+3$ $a_1=2$
(2)$a_{n+1}=2a_n$ $a_1=1$
この動画を見る 
PAGE TOP