福田の数学〜神戸大学2025理系第5問〜連続と微分可能と曲線の長さ - 質問解決D.B.(データベース)

福田の数学〜神戸大学2025理系第5問〜連続と微分可能と曲線の長さ

問題文全文(内容文):

$\boxed{5}$

連続関数$f(x)$は$x \geqq 0$で$f(x) \geqq 0$を満たし、

$x \gt 0$で微分可能であり、その導関数$f'(x)$は

連続であるとする。

$t \geqq 1$を満たす$t$に対して、

$y=f(x) \ (1\leqq x \leqq t)$で表される曲線の長さを

$h(t)$とし、$t=1$のときは$h(1)=0$とする。

以下の問いに答えよ。

(1)$t\gt 1$とする。

開区間$(1,t)$で常に$f(x)-xf'(x)=0$が成り立つならば、

閉区間$[1,t]$で$\dfrac{f(x)}{x}$は定数であることを示せ。

(2)$t\geqq 1$を満たす任意の$t$に対して、

$g(t)=h(t)+2$が成り立つとする。

このとき、$f(1)$の値を求めよ。

また、$t\geqq 1$のとき$f(t)$を$t$を用いて表せ。

$2025$年神戸大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

連続関数$f(x)$は$x \geqq 0$で$f(x) \geqq 0$を満たし、

$x \gt 0$で微分可能であり、その導関数$f'(x)$は

連続であるとする。

$t \geqq 1$を満たす$t$に対して、

$y=f(x) \ (1\leqq x \leqq t)$で表される曲線の長さを

$h(t)$とし、$t=1$のときは$h(1)=0$とする。

以下の問いに答えよ。

(1)$t\gt 1$とする。

開区間$(1,t)$で常に$f(x)-xf'(x)=0$が成り立つならば、

閉区間$[1,t]$で$\dfrac{f(x)}{x}$は定数であることを示せ。

(2)$t\geqq 1$を満たす任意の$t$に対して、

$g(t)=h(t)+2$が成り立つとする。

このとき、$f(1)$の値を求めよ。

また、$t\geqq 1$のとき$f(t)$を$t$を用いて表せ。

$2025$年神戸大学理系過去問題
投稿日:2025.06.22

<関連動画>

解けるように作られた方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解$(x,y)$を求めよ.
$ 16^{x^2+y}+16^{x+y^2}=1$
この動画を見る 

福田のわかった数学〜高校2年生012〜高次方程式の作成

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$\alpha=\sqrt{13}+\sqrt{9+2\sqrt{17}}+$$\sqrt{9-2\sqrt{17}}$
を解にもつ整数係数であり$x^4$の係数1の
4次方程式を作れ。また、残りの解を求めよ。
この動画を見る 

【高校数学】数Ⅲ-21 三角形の形状②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
異なる3つの複素数$z_1,z_2,z_3$の間に
等式$z_1+i \\\ z_2=(1+i)z_3$が成り立つとき,
3点$P(z_1),Q(z_2),R(z_3)$を頂点とする$\triangle PQR$は
どのような三角形か.
この動画を見る 

ベトナム数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
この動画を見る 

4次方程式の解でできた式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-x^3-x^2-x+3=0$の4つの解を$\alpha,\beta,\delta,\zeta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)(\zeta^3-1)$の値を求めよ.
この動画を見る 
PAGE TOP