【高校数学】独立な試行の確率~イメージでいけんじゃね?~ 2-5【数学A】 - 質問解決D.B.(データベース)

【高校数学】独立な試行の確率~イメージでいけんじゃね?~ 2-5【数学A】

問題文全文(内容文):
独立な試行の確率についての説明動画です
チャプター:

00:00 はじまり

00:27 独立の言葉の説明

00:45 独立な試行の例

01:46 独立な試行の確率公式

02:18 例題演習(1)

04:51 例題演習(2)

06:41 まとめ

07:27 まとめノート

単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
独立な試行の確率についての説明動画です
投稿日:2020.07.19

<関連動画>

高校受験 図形問題

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BD=?
*図は動画内参照
この動画を見る 

正方形と角度

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x = ?$
*図は動画内参照
この動画を見る 

14奈良県教員採用試験(数学:2-1番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣-(1)
$\sqrt{n^2+211}$が整数となる$n \in \mathbb{ N }$を求めよ。
この動画を見る 

福田の数学〜九州大学2025理系第4問〜平面幾何の証明

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

半径$1$の円周上に反時計回りに

点$A,B,C,D$を順にとり、

線分$AD$は直径で、$AC=CD$、

$AB=BC$が成り立つとする。

(1)$\angle ACB$を求めよ。

(2)$BC$を求めよ。

(3)線分$AC$と線分$BD$の交点を$E$とするとき、

三角形$BCE$の面積を求めよ。

$2025$年九州大学理系過去問題
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 
PAGE TOP