伝説の東大入試『π>3.05の証明』、正360角形で解いてみた! - 質問解決D.B.(データベース)

伝説の東大入試『π>3.05の証明』、正360角形で解いてみた!

問題文全文(内容文):
伝説の東大の問題
π>3.05を証明せよ

正360角形を使って解説します
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
伝説の東大の問題
π>3.05を証明せよ

正360角形を使って解説します
投稿日:2020.07.28

<関連動画>

【理数個別の過去問解説】2021年度東京大学 数学 理科第3問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2021年度東京大学 数学 理科第3問(1)解説
東京大学 2021年理科第3問(2)それぞれの項で分けて丁寧に積分せよ
関数
$f(x)=\dfrac{x}{x²+3}$
に対して、$y=f(x)$のグラフをCとする。点A($1,f(1)$)におけるCの接線を
$l:y=g(x)$
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
$\displaystyle \int_{\alpha}^1{f(x)-g(x)}^2 dx$
を計算せよ。
この動画を見る 

福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。

2023大阪大学理系過去問
この動画を見る 

いつも質問されるので。。。分数式の計算 駒沢大学 数II

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x^2+8x+7}{x^2 -7x+10} \div \frac{x^2-2x-3}{x^2 -5x+6}$

駒澤大学
この動画を見る 

福田のわかった数学〜高校1年生091〜確率(11)反復試行の確率(5)東京大学の問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(11) 反復試行(5)\\
格子点上を次の規則で点\textrm{P}が動く。\\
(\textrm{a})最初、点\textrm{P}は原点にある。\\
(\textrm{b})ある時刻で点\textrm{P}が(m,n)にあるとき、その1秒後の点\textrm{P}の位置は等確率で\\
(m+1,n), (m,n+1), (m,n-1), (m-1,n)である。\\
6秒後に点\textrm{P}が直線y=x上にある確率を求めよ。
\end{eqnarray}

東京大学過去問
この動画を見る 

因数分解 京都産業大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(x^2-2x)^2-2x^2+4x-3$を因数分解せよ。

京都産業大学
この動画を見る 
PAGE TOP