伝説の東大入試『π>3.05の証明』、正360角形で解いてみた! - 質問解決D.B.(データベース)

伝説の東大入試『π>3.05の証明』、正360角形で解いてみた!

問題文全文(内容文):
伝説の東大の問題
π>3.05を証明せよ

正360角形を使って解説します
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
伝説の東大の問題
π>3.05を証明せよ

正360角形を使って解説します
投稿日:2020.07.28

<関連動画>

お茶の水女子大 2次方程式 訂正版

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:1988年お茶の水女子大学 過去問訂正版
この動画を見る 

福田の数学〜京都大学2024年文系第2問〜立方体を塗り分ける確率

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$個の異なる色を用意する。立方体の各面にいずれかの色を塗る。各面にどの色を塗るかは同様に確からしいとする。辺を共有するどの二つの面にも異なる色が塗られる確率を$p_n$とする。次の問いに答えよ。
(1)$p_3$を求めよ。
(2)$p_4$を求めよ。
この動画を見る 

新潟大(医)3次関数・接線・面積 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#新潟大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C:y=2x^3-12x$
$l:(1,-2)$を通る$C$の接線

(1)
$l$の方程式

(2)
$C$と$l$とで囲まれた面積

出典:2006年新潟大学医学部 過去問
この動画を見る 

東大医学部ベテランちが5浪TAWASHIに早稲田の数学の問題を解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
東大医学部のベテランちさんが、TAWASHIさんに早稲田大学の数学入試を解説します。

問題の解き方を理解しましょう!
この動画を見る 

近畿(医)2つの三次関数の共通接線 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$C_1:f(x)=x^3,C_2:g(x)=(x-2)^3+k$
$C_1,C_2$と接する共通接線をLとする。
(1)Lと$C_1$の接点P(t,f(t))とする。kをtの式で表せ。
(2)Lの本数
この動画を見る 
PAGE TOP