ベトナム数学オリンピック - 質問解決D.B.(データベース)

ベトナム数学オリンピック

問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
投稿日:2022.08.04

<関連動画>

指数とルートの方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x$を求めよ。
$\sqrt{ \displaystyle \frac{4^{20}-2^{21}+1}{2^{20}+2^{11}+1} }=2^x-1$
この動画を見る 

ただの約分

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1+2+3+4+8+・・・・・・+2^{2024}}{1+8+64+512+・・・・・・+2^{2022}}$
これを計算せよ.
この動画を見る 

素数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,q,rは素数である.
$p^q+1=r$を満たす(p,q,r)をすべて求めよ.
この動画を見る 

やっぱり指数が好き

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$16^x = 49$
$7^y=64$
$(xy)^{xy} = ?$
この動画を見る 

【高校数学】 数Ⅱ-129 指数関数③・方程式編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。

①$8^{x}=4$

②$(\displaystyle \frac{1}{3})^{x}=9$

③$4^{2x-1}=2^{3x-5}$

④$3^{2x}-3^{x+1}-54=0$

⑤$2^{2x+1}-9・2^{x}+4=0$
この動画を見る 
PAGE TOP