福田の数学〜慶應義塾大学理工学部2025第1問(3)〜逆関数の微分 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学理工学部2025第1問(3)〜逆関数の微分

問題文全文(内容文):

$\boxed{1}$

(3)$f(x)$を微分可能な関数とし、

$g(x)=x^3+x$とする。

関数$g(x)$は微分可能な逆関数$g^{-1}(x)$をもつ。

定数$t$に対して、関数$t^2x^2-f(g^{-1}(x))$は

$x=t^3+t$で極値をとるとする。

このとき、$f'(t)$を$t$の多項式で表すと$f'(t)=\boxed{オ}$となる。

次に、任意の定数$t$に対して、関数$t^2x^2-f(g^{-1}(x))$は

$x=t^3+t$で極値をとるとする。

このとき、$f(0)=-2$ならば$f(1)=\boxed{カ}$である。

$2025$年慶應義塾大学理工学部過去問題
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)$f(x)$を微分可能な関数とし、

$g(x)=x^3+x$とする。

関数$g(x)$は微分可能な逆関数$g^{-1}(x)$をもつ。

定数$t$に対して、関数$t^2x^2-f(g^{-1}(x))$は

$x=t^3+t$で極値をとるとする。

このとき、$f'(t)$を$t$の多項式で表すと$f'(t)=\boxed{オ}$となる。

次に、任意の定数$t$に対して、関数$t^2x^2-f(g^{-1}(x))$は

$x=t^3+t$で極値をとるとする。

このとき、$f(0)=-2$ならば$f(1)=\boxed{カ}$である。

$2025$年慶應義塾大学理工学部過去問題
投稿日:2025.04.17

<関連動画>

福田のおもしろ数学317〜複雑な数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle a_n=n\log n\log(n+1)\{\sin(\frac{1}{\log n})-\sin(\frac{1}{\log(n+1})\}$
$\displaystyle \lim_{n\to \infty}a_n$を求めて下さい。
この動画を見る 

大学入試問題#800「コメントが難しい」 #兵庫県立大学中期(2012) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
実数$x$に対して
$f(x)=\displaystyle \lim_{ x \to \infty } n\{\sin(\displaystyle \frac{1+n}{n}x)+\sin(\displaystyle \frac{1-n}{n}x)\}$とおく。
次の問いに答えよ。
1.$f(x)$を求めよ。
2.定積分$\displaystyle \int_{0}^{\pi} f(x) dx$を求めよ。

出典:2012年兵庫県立大学中期 入試問題
この動画を見る 

大学入試問題#395「使う技は、関数から・・・」 大阪市立大学2009 #極限 誘導は概要欄

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$のとき
$\sin\ x \geqq \displaystyle \frac{2}{\pi}x$を示せ

(2)
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{0}^{\frac{\pi}{2}} e^{-n\ \sin\ x}dx=0$を示せ

出典:2009年大阪市立大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系039〜極限(39)関数の極限、色々な極限(9)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(9)\\
\lim_{x \to 0}\frac{e^{2x}-e^{-x}}{x} を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜浜松医科大学2024医学部第3問〜等式の証明と無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1) すべての自然数$n$に対して
$\begin{eqnarray}\displaystyle \sum_{k=1}^n \displaystyle \frac{(-1)^{k-1}}{k} =
\begin{cases}
\displaystyle \sum_{k=1}^m \displaystyle \frac{1}{m+k} & (n が偶数(n = 2m)のとき) \\
\displaystyle \sum_{k=1}^m \displaystyle \frac{1}{m-1+k} & ( nが奇数(n = 2m-1)のとき )
\end{cases}
\end{eqnarray}$
を証明せよ.

(2) (1)の左辺において$n \to \infty$として, 区分求積法を用いて無限級数
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$
の和の値を求めよ.

(3) (2)の無限級数の項の順序を入れ替えてできる無限級数
$1\underbrace{ -\frac{1}{2}-\frac{1}{4} }_{ 2項 }+\displaystyle \frac{1}{3}\underbrace{ -\frac{1}{6}-\frac{1}{8} }_{ 2項 }+\displaystyle \frac{1}{5}\underbrace{ -\frac{1}{10}-\frac{1}{12} }_{ 2項 }+\cdots$
の和の値を求めよ.

(4) 上の結果からどのようなことが考察されるか.「有限」と「無限」という言葉を用いて述べよ.
この動画を見る 
PAGE TOP