【数学】中高一貫校用問題集幾何:三平方の定理:平面図形 垂線の長さ - 質問解決D.B.(データベース)

【数学】中高一貫校用問題集幾何:三平方の定理:平面図形 垂線の長さ

問題文全文(内容文):
次の2点A,Bを通る直線に原点O(0,0)から引いた垂線OHの長さを求めなさい。
(1)$A(2,0)$, $B(0,6)$
(2)$A(\dfrac{25}{3},0)$, $B(0,\dfrac{25}{4})$
チャプター:

0:00 オープニング
0:05 問題文
0:14 (1)解説
2:26 (2)解説
4:48 エンディング

単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2点A,Bを通る直線に原点O(0,0)から引いた垂線OHの長さを求めなさい。
(1)$A(2,0)$, $B(0,6)$
(2)$A(\dfrac{25}{3},0)$, $B(0,\dfrac{25}{4})$
投稿日:2024.07.12

<関連動画>

分母の有理化のタイミング 桃山学院

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{41}{\sqrt{42}}-(\frac{\sqrt{6}}{\sqrt{7}}-\frac{\sqrt{7}}{\sqrt{6}})$
この動画を見る 

【問題用紙を回転させる?】図形:福井県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#円#平面図形#高校入試過去問(数学)#福井県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 福井県の高校

次の問いに答えなさい。
$ \angle x$の大きさを求めよ。
※図は動画内参照
この動画を見る 

【その場で導け…!】図形:開智高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#円#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
開智高等学校の入試から、図形問題です。

全国の入試問題から、意図が分かりやすい大切な問題に絞って、ひたすら解きまくっていきます。
傾向と対策のために、軽い頭の体操のために、あるいは、時間つぶしのためにどうぞ。
チャンネル登録は、こちらで。
/ @math_shirotan

X、tik tok、Instagramのフォローもお願いします!

#高校受験 #高校入試 #数学

音楽素材:
音楽 → 「たうろんの!成りあ音楽!」
FREE BGM DOVA-SYNDROME
フリー音楽素材 魔王魂

We are introducing the entrance exam questions for Japanese high schools.
It's an important issue for you to understand the basics of mathematics.
Would you like to solve this math problem and check out our commentary?
このコンテンツの作成手段
この動画を見る 

質問に対する返答動画です。円の性質、三平方の定理、計算の工夫、

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#三平方の定理
指導講師: 鈴木貫太郎
問題文全文(内容文):
右の図のように、半径2の外接する2円A,Bが半径5の円Oに内接している。
2円A,Bに外接する円Oに内接する円Cの半径を求めよ。
*図は動画内参照
この動画を見る 

【高校受験対策/数学】死守-94

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守94

①$(-3)×5$を計算せよ。

②$\frac{x}{2}-2+(\frac{x}{5}-1)$を計算せよ。

③$24xy^2÷(-8xy)×2x$を計算せよ。

④$(\sqrt{3}+\sqrt{2})(2\sqrt{3}+\sqrt{2})+\frac{6}{\sqrt{6}}$を計算せよ。

⑤$(x-3)^2-(x+4)(x-4)$を計算せよ。

⑥$x^2-8x+12$を因数分解せよ。

⑦右の図のように、底面が正方形BCDEである正四角すいABCDEがある。
このとき、直線BCとねじれの位置にある直線をすべて書きなさい。

⑧気温は、高度が100$m$増すごとに0.6℃ずつ低くなる。
地上の気温が7.6℃のとき、地上から2000m上空の気温は何℃か求めよ。

⑨下の表は、あるクラスの13人のハンドボール投げの記録を、大きさの順に並べたものである。
この13人と太郎さんを合わせた14人の記録の中央値は、太郎さんを合わせる前の13人の記録の中央値と比べて、1$m$大きい。
このとき太郎さんの記録は何$m$か求めよ。
この動画を見る 
PAGE TOP