数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく

問題文全文(内容文):
四面体$OABC$の辺$AB$を$4:5$に内分する点を$D$、辺$OC$を$2:1$に内分する点を$E$とし、線分$DE$の中点を$P$、直線$OP$が平面$ABC$と交わる点を$Q$とする。
次の各問いに答えよ。
(1)
$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とおくとき、$\overrightarrow{ OP }$を$\vec{ a },\ \vec{ b },\ \vec{ c }$で表せ。
また、$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の大きさの比$|\overrightarrow{ OP }|:|\overrightarrow{ OQ }|$を最も簡単な整数比で表せ。

(2)
$\triangle ABQ$と$\triangle ABC$の面積比$\triangle ABQ:\triangle ABC$を最も簡単な整数比で表せ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体$OABC$の辺$AB$を$4:5$に内分する点を$D$、辺$OC$を$2:1$に内分する点を$E$とし、線分$DE$の中点を$P$、直線$OP$が平面$ABC$と交わる点を$Q$とする。
次の各問いに答えよ。
(1)
$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とおくとき、$\overrightarrow{ OP }$を$\vec{ a },\ \vec{ b },\ \vec{ c }$で表せ。
また、$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の大きさの比$|\overrightarrow{ OP }|:|\overrightarrow{ OQ }|$を最も簡単な整数比で表せ。

(2)
$\triangle ABQ$と$\triangle ABC$の面積比$\triangle ABQ:\triangle ABC$を最も簡単な整数比で表せ。
投稿日:2021.10.24

<関連動画>

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$立方体OADB-CFGEを考える。$0 \leqq x \leqq 1$となる実数xに対し、
$\overrightarrow{ OP }=x\ \overrightarrow{ OG }$と
なる点Pを考え、$\angle APB=\theta$とおく。

(1)$x=0$のとき、$\theta=\boxed{\ \ し\ \ }$である。また、$x=1$のとき、$\theta=\boxed{\ \ す\ \ }$である。

$\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }$の選択肢
$(\textrm{a})0  (\textrm{b})\frac{\pi}{6}  (\textrm{c})\frac{\pi}{3}  (\textrm{d})\frac{\pi}{2}$
$(\textrm{e})\frac{2}{3}\pi  (\textrm{f})\frac{5}{6}\pi  (\textrm{g})\pi $

(2)$0 \lt x \lt 1$の範囲で$\theta=\frac{\pi}{2}$となるxの値は、$x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。

(3)$y=\cos\theta$とおき、yをxの関数と考える。このとき、yをxで表せ。また、
$0 \leqq x \leqq 1$の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。

2021上智大学理工学部過去問
この動画を見る 

【数C】【空間ベクトル】4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(5)〜共面条件

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)$t$を実数とする。座標空間において、3点O(0,0,0), A(1,0,2), B(2,-1,0)の定める平面OAB上に点C($t$+1,$t$,1-$t$)があるとき、$t$=$\boxed{\ \ オ\ \ }$である。
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(5)〜空間ベクトルと直線のベクトル方程式

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$$座標空間において、点(-1,0,0)を通りベクトル\vec{ a }=(0,1,1)に平行な直線
上の点と、$$$$点(0,0,4)を通り\vec{ b }=(1,2,0)に平行な直線上の点の距離
の最小値は\boxed{ ク }である。$$
この動画を見る 
PAGE TOP