【数Ⅲ】積分法:sin^8 xの積分をスマートに解く - 質問解決D.B.(データベース)

【数Ⅲ】積分法:sin^8 xの積分をスマートに解く

問題文全文(内容文):
$sin^8 x$の0から$\dfrac{\pi}{2}$の範囲の積分を求めよ
チャプター:

0:00 OP
0:24 sin^2 xの積分
1:59 sin^8 xの積分
8:28 まとめ
8:34 ED

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$sin^8 x$の0から$\dfrac{\pi}{2}$の範囲の積分を求めよ
投稿日:2021.12.08

<関連動画>

#会津大学2024#定積分_3#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{e^2}^{e^3} \displaystyle \frac{1}{x log x} dx$

出典:2024年会津大学
この動画を見る 

#高知工科大学2024#定積分_27#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos^2x dx$

出典:2024年高知工科大学
この動画を見る 

大学入試問題#220 東海大学医学部【再投稿】 #定積分 #King property

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}x(\cos^2x)(\sin\ x)dx$

出典:東海大学医学部 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題042〜明治大学2019年度理工学部第1問(3)〜定積分で表された関数

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)関数f(x)が等式
$f(x)=\pi x\sin x+\frac{2\pi}{\displaystyle\int_0^{\frac{\pi}{2}}f(t)dt}$
を満たすとき、
$f(x)=\pi x\sin x-\boxed{ス}+\sqrt{\boxed{セ}}$
または
$f(x)=\pi x\sin x-\boxed{ス}-\sqrt{\boxed{セ}}$
である。

2019明治大学理工学部過去問
この動画を見る 

大学入試問題#136 南山大学(2021) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}|2x(1-x^2)e^{-x^2}|dx$を計算せよ。

出典:2021年南山大学 入試問題
この動画を見る 
PAGE TOP