【数C】【平面上のベクトル】ベクトル方程式4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトル方程式4 ※問題文は概要欄

問題文全文(内容文):
A(-6, 2), B(3, -5)とする。線分ABの垂直二等分線の方程式を、ベクトルを利用して求めよ。
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-6, 2), B(3, -5)とする。線分ABの垂直二等分線の方程式を、ベクトルを利用して求めよ。
投稿日:2025.05.19

<関連動画>

【高校数学】 数B-6 ベクトルの平行

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\overrightarrow{ e }$を単位ベクトルとするとき、$\overrightarrow{ e }$と平行で、大きさが5のベクトルを求めよう。

②$|\vec{ a }|=3$のとき、$\overrightarrow{ a }$と平行な単位ベクトルを求めよう。

③$\overrightarrow{ OA }=\overrightarrow{ a },\overrightarrow{ OB }=\overrightarrow{ b },\overrightarrow{ OP }=6\vec{ a }-3\vec{ b },\overrightarrow{ OQ }=2\vec{ a }+\overrightarrow{ b }$であるとき、$\overrightarrow{ PQ }//\overrightarrow{ AB }$であることを示そう。
ただし、$\overrightarrow{ a }≠0,\overrightarrow{ b }≠0$で、$\overrightarrow{ a }$と$\overrightarrow{ b }$は平行でないものとする。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{ a }=(2 ,2)$ ,$\vec{ b }=(3 ,1)$ のとき、$\vec{ x }-\vec{ b }$ が $\vec{ a }$に平行で、
かつ $| \vec{ x }+\vec{ b } |=4$ となるような$\vec{ x }$ を成分表示せよ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC
と交わる点をRとする。このとき
$\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }$
である。

2021上智大学文系過去問
この動画を見る 

【数学B/平面ベクトル】垂直なベクトル・単位ベクトル

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
ベクトル$\vec{ a }=(\sqrt{ 3 },-1)$に垂直な単位ベクトル$\vec{ e }$を求めよ。
この動画を見る 

【数学B/平面ベクトル】点Pの存在範囲(1)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle OAB$に対して、点$P$が次の条件を満たしながら動くとき、点$P$の存在範囲を図示せよ。
$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB },$ $1 \leqq s \leqq 2,$ $0 \leqq t \leqq 1$
この動画を見る 
PAGE TOP