【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第3問(1)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第3問(1)解説

問題文全文(内容文):
東京大学 2021年理科第3問(1)曲線と接線の接点以外の共有点を求めよ
関数
f(x)=x/(x²+3)
に対して、y=f(x)のグラフをCとする。点A(1,f(1))におけるCの接線を
l:y=g(x)
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
∫{f(x)-g(x)}²dx
を計算せよ。
チャプター:

0:00 問題文
0:05 接線の方程式を求める
1:26 共有点の座標を求める
3:36 エンディング

単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科第3問(1)曲線と接線の接点以外の共有点を求めよ
関数
f(x)=x/(x²+3)
に対して、y=f(x)のグラフをCとする。点A(1,f(1))におけるCの接線を
l:y=g(x)
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
∫{f(x)-g(x)}²dx
を計算せよ。
投稿日:2021.05.02

<関連動画>

福田の数学〜千葉大学2023年第4問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つの実数$a$,$b$は0<$b$<$a$を満たすとする。関数
$f(x)$=$\displaystyle\frac{1}{b}\left(e^{-(a-b)x}-e^{-ax}\right)$
の最大値を$M(a,b)$、最大値をとるときの$x$の値を$X(a,b)$と表す。ここで、$e$は自然対数の底である。
(1)$X(a,b)$を求めよ。
(2)極限$\displaystyle\lim_{b \to +0}X(a,b)$ を求めよ。
(3)極限$\displaystyle\lim_{b \to +0}M(a,b)$ を求めよ。
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第4問〜関数の増減と実数解をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ (1)関数
$y$=$\displaystyle-\frac{\cos3x}{\sin^3x}$ (0<$x$<$\pi$)
の増減と極値を調べ、そのグラフの概形を描け。ただし、グラフの凹凸は調べなくてよい。
(2)$a$を実数の定数とする。$x$についての方程式
$-\cos3x$=$a\sin^3x$
が$\displaystyle\frac{\pi}{6}$<$x$<$\displaystyle\frac{2\pi}{3}$の範囲に実数解をもつような$a$の値の範囲を求めよ。
この動画を見る 

【数Ⅲ-130】速度と加速度③(円運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度③・円運動編)

$o$が原点の座標平面上の動点$P$の時刻$t$における位置が$x=3\cos2t$、$y=3\sin2t$で表されるとき、次の問いに答えよ。

①速度$\vec{v},$加速度$\vec{a}$を求めよ。

②$\overrightarrow{OP} \perp \vec{v},\vec{v}\perp \vec{a}$を示せ。
この動画を見る 

福田の数学〜北里大学2022年医学部第2問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の各問いに答えよ。
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。
(2)$x≠0$を満たすすべての実数xに対して、$e^x \gt 1+x$と$e^{-x^2} \lt \frac{1}{1+x^2}$が
成り立つことを証明せよ。
(3)$\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}$が成り立つことを証明せよ。

2022北里大学医学部過去問
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問(3)〜2曲線の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)座標平面上の2つの曲線$y=ae^x$と$y=-x^2+2x$が共有点をもち、かつ、その
共有点において共通の接線をもつような正の定数$a$の値を求めよ。

2021早稲田大学教育学部過去問
この動画を見る 
PAGE TOP