式の値 栄徳 - 質問解決D.B.(データベース)

式の値 栄徳

問題文全文(内容文):
$2x+3xy+2y=12$
$3x-2xy+3y=5$
$x^2-xy+y^2 =?$

栄徳高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2x+3xy+2y=12$
$3x-2xy+3y=5$
$x^2-xy+y^2 =?$

栄徳高等学校
投稿日:2022.04.21

<関連動画>

#62 #数検1級1次過去問 #因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の式を係数が整数の範囲で因数分解せよ。
$x^6-14x^4+17x^2-4$

出典:数検1級1次
この動画を見る 

高等学校入学試験問題予想:法政大学第二高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(展開、因数分解)#2次方程式#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
因数分解せよ.

(1)$(x-2y)^2+(x+y)(x-5y)+y^2$
(2)$a=\dfrac{1}{\sqrt5+1},b=\dfrac{1}{\sqrt5-1}$のとき,$(a-4b)(b-4a)=?$

$\boxed{2}$
1~5までの数字が書かれたカードが2枚ずつ合計10枚ある.

(1)これらのカードを袋に入れてその中から同時に2枚取り出すとき,カードの数字の積が偶数となる確率は?
(2)$n$の3以上の自然数$\dfrac{4}{\sqrt n-\sqrt2}$の整数部分が2であるとき,
$n$として考えられる値を全て求めよ.

$\boxed{3}$
$PQ$と$D$の交点を$R$とする.
点$P,Q$の$x$座標を$p,q$とする.
直線$PQ$の傾きが,$C,D$の比例定数$a$と等しく,$R$が線分$PQ$の中点となる.
(1)点$A$の座標を$a$で表せ.
(2)$p+q=?$
(3)点$R$の座標を$a$で表せ.
(4)$p.q$の値

法政第二高校過去問
この動画を見る 

【近道は…!】因数分解:法政大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
(x+2)(x-3)-4(x+1)-14を因数分解しなさい。
この動画を見る 

【高校受験対策/数学】死守60

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#空間図形#1次関数#平行と合同#確率#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守605-41

①$-5-(-7)$を計算しなさい。

➁$(\frac{1}{4}-\frac{2}{3})\times 12$を計算しなさい。

③$4x \times\frac{2}{5}xy \div 2x^2$を計算しなさい。

④$(-2a+3)(2a+3)+9$を計算しなさい。

⑤$\sqrt{24} \div \sqrt{8}-\sqrt{12}$を計算しなさい。

⑥$150$を素因数分解しなさい。

⑦次の連立方程式を解きなさい。
$y=4(x+2)$
$6x-y=-10$

⑧次の数量の関係を等式で表しなさい。
100円硬貨が$a$ 枚、50円硬貨が$b$ 枚あり、これらをすべて10円硬貨に両替すると$c$ 枚になる。

⑨箱の中に同じ大きさの白玉がたくさん入っている。
そこに同じ大きさの黒玉100個入れてよくかき混ぜた後、その中から34個の玉を無作為に取りだしたところ、黒玉が4個入っていた。
この結果から、箱の中にはおよそ何個の白玉が入っていると考えられるか求めなさい。

➉半径6cmの球を中心$o$を通る平面で切った半球の表面積を求めなさい。

⑪右の図で$l /\!/ m$、$AB=AC$のとき、$\angle x$ の大きさを求めなさい。
この動画を見る 

知っていれば一瞬!って訳でもない 日大習志野(改)

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{x}+\frac{1}{y} = \sqrt 7$ , xy=2のとき
$\frac{1}{x}-\frac{1}{y} = ?$ (x>y>0)

日本大学習志野高等学校
この動画を見る 
PAGE TOP