#56数検1級1次 過去問 #4次方程式 - 質問解決D.B.(データベース)

#56数検1級1次  過去問 #4次方程式

問題文全文(内容文):
方程式
$x^4-4x-1=0$の実数解を求めよ

出典:数検1級1次
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
方程式
$x^4-4x-1=0$の実数解を求めよ

出典:数検1級1次
投稿日:2023.07.01

<関連動画>

#23 数検1級1次過去問 行列

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$A=(\begin{eqnarray}
1\ 2\ 2 \\
2\ 1\ 2 \\
2\ 2\ 1
\end{eqnarray})$

$A^5$を求めよ。
この動画を見る 

重積分⑪【f(x,y)の領域Dにおける平均】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$Z=f(x,y)$のDにおける平均
${}^{\exists}h \in \mathbb{R}$
$h×D=∬_D f(x,y)dxdy$
この動画を見る 

#64 #数検1級1次過去問「久しぶりに重積分やってみよー」 #重積分 #高専

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
領域$D$が次のように与えられている。
$D=\{(x,y)|0 \leq x \leq 1,0 \leq y \leq 1\}$
このとき、次の2重積分を計算せよ。
$\displaystyle \int\displaystyle \int_{D}|x-y|^{-\frac{2}{3}}dxdy$

出典:数検1級1次
この動画を見る 

練習問題33 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dy}{dx}=(x+y)^2$
の一般解を求めよ.
この動画を見る 

#20 数検1級1次過去問 3重積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
$\iiint_D x^3y^2z \ dx \ dy \ dz$
$D:0\leq x\leq y\leq z\leq 1$
を求めよ.
この動画を見る 
PAGE TOP