#56数検1級1次 過去問 #4次方程式 - 質問解決D.B.(データベース)

#56数検1級1次  過去問 #4次方程式

問題文全文(内容文):
方程式
$x^4-4x-1=0$の実数解を求めよ

出典:数検1級1次
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
方程式
$x^4-4x-1=0$の実数解を求めよ

出典:数検1級1次
投稿日:2023.07.01

<関連動画>

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.

20年5月数学検定1級1次試験(合同式)過去問
この動画を見る 

20年5月数学検定1級1次試験(四面体の体積)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
4点$A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)$とする.
四面体$ABCD$の体積$V$を求めよ.

$a=\left(\begin{eqnarray}
a_1 \\\
a_2 \\\
a_3
\end{eqnarray}\right)$

$a=\left(\begin{eqnarray}
b_1 \\\
b_2 \\\
b_3
\end{eqnarray}\right)$

$a=\left(\begin{eqnarray}
c_1 \\\
c_2 \\\
c_3
\end{eqnarray}\right)$

20年5月数学検定1級1次試験(四面体の体積)過去問
この動画を見る 

数検Ⅰ級レベル 東工大9割男 栗崎

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定1級#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
極限値
$\displaystyle \lim_{ x \to \infty }${$\sqrt{ x^2+3x-1 }- \sqrt[ 3 ]{ x^3+x^2-1 }$}
この動画を見る 

三乗根の外し方 数検1級向け計算練習

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 3 ]{ \sqrt{ 5 }+2 }$の値を求めよ
この動画を見る 

20年5月数学検定1級1次試験(三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$

20年5月数学検定1級1次試験(三角関数)過去問
この動画を見る 
PAGE TOP