福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り

問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。

(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。

2021慶應義塾大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。

(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。

2021慶應義塾大学理工学部過去問
投稿日:2021.02.21

<関連動画>

【数Ⅱ】複素数の計算【簡単なようで間違えやすい計算】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ iと等しいものを2つ選べ.
\dfrac{1}{i^3},\sqrt{-\dfrac{1}{2}}\sqrt{-2}i,\dfrac{1}{\sqrt{-1}},\dfrac{-3+2i}{2+3i}$
この動画を見る 

【高校数学】数Ⅲ-4 複素数の絶対値・2点間の距離②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\alpha=3+(2x-1)i,\beta=x+2-i$とする.
2点$A(\alpha),B(\beta)$と原点$O$が一直線上に
あるとき,実数$x$の値を求めよ.

②$z$を複素数とするとき,$\vert z \vert = \vert \overline{z} \vert = \vert -z \vert$を証明せよ.
この動画を見る 

お茶の水女子大 整式の剰余 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)$を$x^2+x+1$で割ると$x+2$余り、$x^2+1$で割ると$1$余る
$f(x)$を$(x^2+x+1)(x^2+1)$で割った余りを求めよ

出典:2006年お茶の水女子大学 過去問
この動画を見る 

三倍角の公式を複素数の掛け算(ド・モアブルの定理)で簡単に導く

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
三倍角の公式を複素数の掛け算(ド・モアブルの定理)で簡単に導きます.
この動画を見る 

京都大2021 素数という条件は必要か

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$が素数なら$P^4+14$は素数でないことを示せ.

2021京都大過去問
この動画を見る 
PAGE TOP