福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り

問題文全文(内容文):
2 (1)複素数αα2+3α+3=0 を満たすとする。このとき、(α+1)2(α+2)5=    
である。また、(α+2)s(α+3)t=3となる整数s,tの組を全て求めよ。

(2)多項式(x+1)3(x+2)2x2+3x+3で割った時の商は    、余りは    である。
また、(x+1)2021x2+3x+3で割った時の余りは    である。

2021慶應義塾大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
2 (1)複素数αα2+3α+3=0 を満たすとする。このとき、(α+1)2(α+2)5=    
である。また、(α+2)s(α+3)t=3となる整数s,tの組を全て求めよ。

(2)多項式(x+1)3(x+2)2x2+3x+3で割った時の商は    、余りは    である。
また、(x+1)2021x2+3x+3で割った時の余りは    である。

2021慶應義塾大学理工学部過去問
投稿日:2021.02.21

<関連動画>

瞬殺!かいぶん数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
n8+2n7+3n6+4n5+5n4+4n3+3n2+
2n+1は素数でないことを示せ.
この動画を見る 

複素数の計算 群馬大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
z=312+3+12iである.z12の値を求めよ

(1)z1+ia+biの形で表せ.
(2)zを極形式で表せ.

群馬大過去問
この動画を見る 

昭和大(医学部)複素数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
Z=cos25π+isin25π,w=Z+Z3とするとき,
w+w¯
ww¯
の値を求めよ.

昭和大(医)過去問
この動画を見る 

甲南大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#甲南大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
Z=3+i3i

Z+Z2+Z3++Z100

出典:2002年甲南大学 過去問
この動画を見る 

大学入試の因数分解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
整数、実数、複素数の各範囲で因数分解せよ。
x4x22=
この動画を見る 
PAGE TOP preload imagepreload image