問題文全文(内容文):
$x \gt 0,\;\;y \gt 0\;$のとき連立方程式を解け。
\begin{eqnarray}
\left\{
\begin{array}{l}
\left(x+y\right)^2+x^2+y^2+\left(x-y\right)^2=2019\\
\left(x+y\right)\left(x-y\right)=385
\end{array}
\right.
\end{eqnarray}
$x \gt 0,\;\;y \gt 0\;$のとき連立方程式を解け。
\begin{eqnarray}
\left\{
\begin{array}{l}
\left(x+y\right)^2+x^2+y^2+\left(x-y\right)^2=2019\\
\left(x+y\right)\left(x-y\right)=385
\end{array}
\right.
\end{eqnarray}
単元:
#数学(中学生)#中2数学#中3数学#連立方程式#式の計算(展開、因数分解)#高校入試過去問(数学)#早稲田大学系属早稲田実業学校高等部
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x \gt 0,\;\;y \gt 0\;$のとき連立方程式を解け。
\begin{eqnarray}
\left\{
\begin{array}{l}
\left(x+y\right)^2+x^2+y^2+\left(x-y\right)^2=2019\\
\left(x+y\right)\left(x-y\right)=385
\end{array}
\right.
\end{eqnarray}
$x \gt 0,\;\;y \gt 0\;$のとき連立方程式を解け。
\begin{eqnarray}
\left\{
\begin{array}{l}
\left(x+y\right)^2+x^2+y^2+\left(x-y\right)^2=2019\\
\left(x+y\right)\left(x-y\right)=385
\end{array}
\right.
\end{eqnarray}
投稿日:2024.10.24





