福田の数学〜中央大学2022年理工学部第1問〜定積分で表された関数 - 質問解決D.B.(データベース)

福田の数学〜中央大学2022年理工学部第1問〜定積分で表された関数

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 関数f(x)が\hspace{280pt}\\
f(x)=\int_0^{\pi}tf(t)\cos(x+t)dt+\frac{1}{4}\\
を満たしている。このとき、\\
A= \int_0^{\pi}tf(t)\cos tdt,\ \ \ B=\int_0^{\pi}tf(t)\sin tdt\ \ \ \ ... ①\\
とおいてf(x)をAとBで表すと、\\
f(x)=A×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+B×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\ \ \ \ ... ②\\
となる。ここで、\\
\\
\\
\int_0^{\pi}t\cos tdt=-2,\ \ \ \int_0^{\pi}t\cos^2 tdt=\boxed{\ \ ウ\ \ },\ \ \ \int_0^{\pi}t\sin tdt=\pi,\ \ \ \\
\int_0^{\pi}t\sin^2 tdt=\boxed{\ \ エ\ \ },\ \ \ \int_0^{\pi}t\cos t\sin tdt=\boxed{\ \ オ\ \ } \\
\\
\\
を用い、①に②を代入して整理すると、AとBの満たす連立方程式\\
\\
\left\{
\begin{array}{1}
(\ \ \ \boxed{\ \ カ\ \ }\ \ \ )A-\pi B+2=0\\
\pi A +(\ \ \ \boxed{\ \ キ\ \ }\ \ \ )B-\pi = 0\\
\end{array}
\right.\\
\\
が得られる。この連立方程式を解くと\\
A=\frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16},\ \ \ B=\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}\\
が得られ、したがって\\
f(x)= \frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\\
となる。
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }の解答群\\
ⓐ\sin x\ \ \ ⓑ-\sin x\ \ \ ⓒ\cos x\ \ \ ⓓ-\cos x\ \ \
ⓔ\tan x\ \ \ ⓕ-\tan x\ \ \ \\
\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }の解答群\\
ⓐ\pi \ \ \ ⓑ\frac{\pi}{2}\ \ \ ⓒ\frac{\pi}{4}\ \ \ ⓓ\frac{\pi}{8}\ \ \ ⓔ-\pi \ \ \ \\
ⓕ-\frac{\pi}{2}\ \ \ ⓖ-\frac{\pi}{4}\ \ \ ⓗ-\frac{\pi}{8}\ \ \ ⓘ\pi^2 \ \ \ ⓙ\frac{\pi^2}{2}\ \ \ \\
ⓚ\frac{\pi^2}{4}\ \ \ ⓛ\frac{\pi^2}{8}\ \ \ ⓜ-\pi^2 \ \ \ ⓝ-\frac{\pi^2}{2}\ \ \ ⓞ-\frac{\pi^2}{4}\ \ \ \\
ⓟ-\frac{\pi^2}{8}\ \ \ ⓠ\frac{\pi^2+4}{16}\ \ \ ⓡ\frac{\pi^2-4}{16}\ \ \ ⓢ\frac{-\pi^2+4}{16}\ \ \ ⓣ-\frac{\pi^2+4}{16}\ \ \ \\
\\
\\
\boxed{\ \ カ\ \ },\boxed{\ \ キ\ \ },\boxed{\ \ ク\ \ },\boxed{\ \ ケ\ \ }の解答群\\
ⓐ\pi^2+2\ \ \ ⓑ\pi^2-2\ \ \ ⓒ-\pi^2+2\ \ \ ⓓ-\pi^2-2\ \ \ \\
ⓔ\pi^2+4\ \ \ ⓕ\pi^2-4\ \ \ ⓖ-\pi^2+4\ \ \ ⓗ-\pi^2-4\ \ \ \\
ⓘ\pi^2+6\ \ \ ⓙ\pi^2-6\ \ \ ⓚ-\pi^2+6\ \ \ ⓛ-\pi^2-6\ \ \ \\
ⓜ\pi^2+8\ \ \ ⓝ\pi^2-8\ \ \ ⓞ-\pi^2+8\ \ \ ⓟ-\pi^2-8\ \ \ \\
\end{eqnarray}

2022中央大学理工学部過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 関数f(x)が\hspace{280pt}\\
f(x)=\int_0^{\pi}tf(t)\cos(x+t)dt+\frac{1}{4}\\
を満たしている。このとき、\\
A= \int_0^{\pi}tf(t)\cos tdt,\ \ \ B=\int_0^{\pi}tf(t)\sin tdt\ \ \ \ ... ①\\
とおいてf(x)をAとBで表すと、\\
f(x)=A×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+B×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\ \ \ \ ... ②\\
となる。ここで、\\
\\
\\
\int_0^{\pi}t\cos tdt=-2,\ \ \ \int_0^{\pi}t\cos^2 tdt=\boxed{\ \ ウ\ \ },\ \ \ \int_0^{\pi}t\sin tdt=\pi,\ \ \ \\
\int_0^{\pi}t\sin^2 tdt=\boxed{\ \ エ\ \ },\ \ \ \int_0^{\pi}t\cos t\sin tdt=\boxed{\ \ オ\ \ } \\
\\
\\
を用い、①に②を代入して整理すると、AとBの満たす連立方程式\\
\\
\left\{
\begin{array}{1}
(\ \ \ \boxed{\ \ カ\ \ }\ \ \ )A-\pi B+2=0\\
\pi A +(\ \ \ \boxed{\ \ キ\ \ }\ \ \ )B-\pi = 0\\
\end{array}
\right.\\
\\
が得られる。この連立方程式を解くと\\
A=\frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16},\ \ \ B=\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}\\
が得られ、したがって\\
f(x)= \frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\\
となる。
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }の解答群\\
ⓐ\sin x\ \ \ ⓑ-\sin x\ \ \ ⓒ\cos x\ \ \ ⓓ-\cos x\ \ \
ⓔ\tan x\ \ \ ⓕ-\tan x\ \ \ \\
\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }の解答群\\
ⓐ\pi \ \ \ ⓑ\frac{\pi}{2}\ \ \ ⓒ\frac{\pi}{4}\ \ \ ⓓ\frac{\pi}{8}\ \ \ ⓔ-\pi \ \ \ \\
ⓕ-\frac{\pi}{2}\ \ \ ⓖ-\frac{\pi}{4}\ \ \ ⓗ-\frac{\pi}{8}\ \ \ ⓘ\pi^2 \ \ \ ⓙ\frac{\pi^2}{2}\ \ \ \\
ⓚ\frac{\pi^2}{4}\ \ \ ⓛ\frac{\pi^2}{8}\ \ \ ⓜ-\pi^2 \ \ \ ⓝ-\frac{\pi^2}{2}\ \ \ ⓞ-\frac{\pi^2}{4}\ \ \ \\
ⓟ-\frac{\pi^2}{8}\ \ \ ⓠ\frac{\pi^2+4}{16}\ \ \ ⓡ\frac{\pi^2-4}{16}\ \ \ ⓢ\frac{-\pi^2+4}{16}\ \ \ ⓣ-\frac{\pi^2+4}{16}\ \ \ \\
\\
\\
\boxed{\ \ カ\ \ },\boxed{\ \ キ\ \ },\boxed{\ \ ク\ \ },\boxed{\ \ ケ\ \ }の解答群\\
ⓐ\pi^2+2\ \ \ ⓑ\pi^2-2\ \ \ ⓒ-\pi^2+2\ \ \ ⓓ-\pi^2-2\ \ \ \\
ⓔ\pi^2+4\ \ \ ⓕ\pi^2-4\ \ \ ⓖ-\pi^2+4\ \ \ ⓗ-\pi^2-4\ \ \ \\
ⓘ\pi^2+6\ \ \ ⓙ\pi^2-6\ \ \ ⓚ-\pi^2+6\ \ \ ⓛ-\pi^2-6\ \ \ \\
ⓜ\pi^2+8\ \ \ ⓝ\pi^2-8\ \ \ ⓞ-\pi^2+8\ \ \ ⓟ-\pi^2-8\ \ \ \\
\end{eqnarray}

2022中央大学理工学部過去問
投稿日:2022.10.21

<関連動画>

【高校数学】秋田大学の積分の問題をその場で解説しながら解いてみた!毎日積分101日目~47都道府県制覇への道~【㊹秋田】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【秋田大学 2023】
座標平面上に媒介変数$θ$を用いて
$x=2cosθ, y=1+sinθ$
と表される曲線$C$がある。次の問いに答えなさい。
(i) 媒介変数$θ$を消去して$x$と$y$の関係式を求めなさい。
(ii) $\displaystyle θ=\frac{π}{6}$に対応する点における$C$の接線$l$の方程式を求めなさい。
(iii) 曲線$C$と(ii)の接線$l$および$x$軸で囲まれた図形の面積を求めなさい。
この動画を見る 

積分による面積計算の公式①【6分の1公式】#shorts

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
積分による面積計算の公式①に関して解説していきます.
この動画を見る 

【高校数学】山梨大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分89日目~47都道府県制覇への道~【㉜山梨】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【山梨大学 2023】
等式$f(x)=sin2x+\displaystyle \int_0^{\frac{π}{2}}tf(t)dt$を満たす関数$f(x)$を求めよ。
この動画を見る 

【高校数学】毎日積分6日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^2\frac{dx}{x^2-2x+2}$
これを解け.
この動画を見る 

【数Ⅲ】積分法:置換積分の区間の取り方

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
置換積分の区間の取り方を解説します!
この動画を見る 
PAGE TOP