【数学】中2-59 仮定と結論 - 質問解決D.B.(データベース)

【数学】中2-59 仮定と結論

問題文全文(内容文):
『$a=b,b=c$ならば、$a=c$である』の文の、
仮定は①____、結論は②____。
ちなみに証明するとき、仮定は③____アイテムで、
結論は④____アイテムなんだ!

◎次の文の仮定には____、結論には‗‗‗‗‗‗‗を引こう!

⑤$\triangle ABC \equiv \triangle DEF$ならば、$\angle BAC=\angle EDF$である。

⑥$ℓ//m,m//n$ならば、$ℓ//n$である。

⑦2つの直線が平行ならば、錯角は等しい。

⑧$a=b$ならば、$ac=bc$である。
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
『$a=b,b=c$ならば、$a=c$である』の文の、
仮定は①____、結論は②____。
ちなみに証明するとき、仮定は③____アイテムで、
結論は④____アイテムなんだ!

◎次の文の仮定には____、結論には‗‗‗‗‗‗‗を引こう!

⑤$\triangle ABC \equiv \triangle DEF$ならば、$\angle BAC=\angle EDF$である。

⑥$ℓ//m,m//n$ならば、$ℓ//n$である。

⑦2つの直線が平行ならば、錯角は等しい。

⑧$a=b$ならば、$ac=bc$である。
投稿日:2013.11.04

<関連動画>

大谷翔平選手の凄さを計算しました

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
確率の考え方を用いて大谷翔平選手の凄さを計算しました。
この動画を見る 

【方針が立っても完答は…!】連立方程式:東京学芸大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x,y$についての連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2ax-7y=236 \\
x+2y=\dfrac{a}{7}
\end{array}
\right.
\end{eqnarray}$
の解が$x=3,y=b$である.
このとき,定数$a,b$の値を求めなさい.

東京学芸大高校過去問
この動画を見る 

【分数…同じ部分…!】連立方程式:日本大学第三高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{2x+4}{3}+\dfrac{y+1}{2}=1 \\
2x+4-\dfrac{y+1}{6}=-\dfrac{1}{3}
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

日大第三高校過去問
この動画を見る 

高等学校入学試験予想問題:三重県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $

$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?

$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 2発目!『邪魔なものは下に編』 3x+4y=48をx=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3x+4y=48をx=の形にしましょう。
この動画を見る 
PAGE TOP