【数学】中2-59 仮定と結論 - 質問解決D.B.(データベース)

【数学】中2-59 仮定と結論

問題文全文(内容文):
『$a=b,b=c$ならば、$a=c$である』の文の、
仮定は①____、結論は②____。
ちなみに証明するとき、仮定は③____アイテムで、
結論は④____アイテムなんだ!

◎次の文の仮定には____、結論には‗‗‗‗‗‗‗を引こう!

⑤$\triangle ABC \equiv \triangle DEF$ならば、$\angle BAC=\angle EDF$である。

⑥$ℓ//m,m//n$ならば、$ℓ//n$である。

⑦2つの直線が平行ならば、錯角は等しい。

⑧$a=b$ならば、$ac=bc$である。
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
『$a=b,b=c$ならば、$a=c$である』の文の、
仮定は①____、結論は②____。
ちなみに証明するとき、仮定は③____アイテムで、
結論は④____アイテムなんだ!

◎次の文の仮定には____、結論には‗‗‗‗‗‗‗を引こう!

⑤$\triangle ABC \equiv \triangle DEF$ならば、$\angle BAC=\angle EDF$である。

⑥$ℓ//m,m//n$ならば、$ℓ//n$である。

⑦2つの直線が平行ならば、錯角は等しい。

⑧$a=b$ならば、$ac=bc$である。
投稿日:2013.11.04

<関連動画>

【一本道が見えますか】連立方程式:巣鴨高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2つの連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 14 \\
ax + by = 3
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
bx -ay = -5 \\
4x-5y = 11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき$a,b$の値をそれぞれ求めなさい.

巣鴨高校過去問

この動画を見る 

動体視力と数学を鍛えるサウンド~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の$\Box$をうめなさい.
$624^2-623\times625=\Box$

土浦日大高校過去問
この動画を見る 

【裏技】平行線と角度のこれ知ってた?

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図は2本の平行な直線の間にZ型の線が引かれている。
※図は動画内参照
角xを求めよ。
この動画を見る 

【中1 数学】  中1-43 比例と式②

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 比例と式②
以下の問に答えよ
◎ y = -4x について
<xとyの数値の表>
① x が -3 のときの y の値は?
② y が -16 のときの x の値は?
③ y が -22 のときの x の値は?
④ x が 3 倍になると、y は(  )倍になる。
⑤ $\dfrac{y}{x}$ は(   )になる。(0のとき以外)

◎水を入れるぜ!
16 L 入る水そうに、毎秒 0.4 L ずつ水を入れる。
水を入れはじめてから x 秒後の水の量を y L とする。
⑥ x の変域は?
⑦ y の変域は?
⑧ x と y の関係を式にすると?

◎ろうそくだぜ!!
長さ 15 cm のろうそくに火をつけると、毎分 0.5 cmずつ燃えていった。
火をつけてから x 分後のろうそくの長さを y cm。
⑨ x の変域は?
⑩ y の変域は?
⑪ x と y の関係を式にすると?
※図は動画内参照
この動画を見る 

佐賀県立高校入試2021年2⃣連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年2⃣連立方程式
-----------------
A中学校とB中学校の合計45人のバレーボール部員が、3日間の合同練習をすることになった。
練習場所の近くには山と海があり、最終日のレクリエーションの時間にどちらに行きたいか希望調査をしたところ、動画内の表のような結果になった。
ただし、山または海の希望は、45人の部員全員がどちらか一方だけを希望したものとする。

(ア)
2校のバレーボール部員の人数をそれぞれ求めるために、A中学校バレーボール部員の人数を$x$人、B中学校バレーボール部員の人数を$y$人として、あとのような連立方程式をつくった。
このとき、①にあてはまる式と②にあてはまる方程式を、$x,y$を用いてそれぞれ表しなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
① = 45 \\

\end{array}
\right.
\end{eqnarray}$

(イ)
A中学校バレーボール部員の人数と、B中学校バレーボール部員の人数をそれぞれ求めなさい。
この動画を見る 
PAGE TOP