大学入試問題#519「一目はKing_property」 By にっし~Dairyさん #定積分 - 質問解決D.B.(データベース)

大学入試問題#519「一目はKing_property」 By にっし~Dairyさん #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{e^x(1+2\tan\ x)}{\cos^2\ x} dx$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{e^x(1+2\tan\ x)}{\cos^2\ x} dx$
投稿日:2023.04.28

<関連動画>

大学入試問題#513「このチャンネルでは初めての発想!!」 By Nissydarts さん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{dx}{1-6\sin^2x+12\sin^4x-8\sin^6x}$
この動画を見る 

福田のおもしろ数学498〜定積分で定義された関数の極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$0\lt t \leqq 1$に対し、

$f(t)=\dfrac{1}{t} \displaystyle \int_{0}^{\frac{\pi}{2}t} \vert \cos 2x \vert dx$とする。

$\displaystyle \lim_{t\to 0} f(t)$を求めよ。
    
この動画を見る 

鬼の定積分「投了・・・」 By 英語orドイツ語シはBかHか さん

アイキャッチ画像
単元: #定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} log (\displaystyle \frac{\sin\ x+\cos\ x+1}{\sin\ 2x+1}) dx$
この動画を見る 

数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#神戸商船大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
この動画を見る 

この積分は難問「もはや積分偏差値70over」 By 英語orドイツ語シはBかHか さん

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x|x|(2x^2+1)e^{2x^2}}{2x(xe^{x^2}-1)+e^{-x^2}} dx$
この動画を見る 
PAGE TOP