高2生もセンター試験をやってみよう!【篠原好】 - 質問解決D.B.(データベース)

高2生もセンター試験をやってみよう!【篠原好】

問題文全文(内容文):
「高2生もセンター試験を試してほしい!」理由についてお話しています。
単元: #センター試験・共通テスト関連#センター試験#その他#勉強法#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「高2生もセンター試験を試してほしい!」理由についてお話しています。
投稿日:2020.01.18

<関連動画>

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第2問〜微分・積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
$a \gt 0$とし、$f(x)=x^2-(4a-2)x+4a^2+1$ とおく。座標平面上で、放物線
$y=x^2+2x+1$ を$C,$放物線$y=f(x)$を$D$とする。また、$l$を$C$と$D$の両方に
接する直線とする。

(1)lの方程式を求めよう。
$l$と$C$は点$(t,$ $t^2+2t+1)$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ ア\ \ }\ t+\boxed{\ \ イ\ \ }\right)\ x$$-t^2+\boxed{\ \ ウ\ \ }$ $\cdots$①
である。また、$l$と$D$は点$(s,$ $f(s))$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ エ\ \ }\ s-\boxed{\ \ オ\ \ }\ +\boxed{\ \ カ\ \ }\right)\ x$$-s^2+\boxed{\ \ キ\ \ }\ a^2+\boxed{\ \ ク\ \ }$ $\cdots$②

である。ここで、①と②は同じ直線を表しているので、$t=\boxed{\ \ ケ\ \ },$
$s=\boxed{\ \ コ\ \ }\ a$が成り立つ。
したがって、$l$の方程式は$y=\boxed{\ \ サ\ \ }\ x+\boxed{\ \ シ\ \ }$である。

(2)二つの放物線$C,D$の交点のx座標は$\boxed{\ \ ス\ \ }$である。
$C$と直線$\ t,$および直線$x=\boxed{\ \ ス\ \ }$で囲まれた図形の面積を$S$とすると
$S=\displaystyle \frac{a^{\boxed{セ}}}{\boxed{\ \ ソ\ \ }}$である。

(3)$a \geqq \displaystyle \frac{1}{2}$とする。二つの放物線$C,D$と直線$l$で囲まれた図形の中で
$0 \leqq x \leqq 1$を満たす部分の面積$T$は、$a \gt \boxed{\ \ タ\ \ }$のとき、$a$の値によらず
$T=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$のとき
$T=-\boxed{\ \ テ\ \ }\ a^3+\boxed{\ \ ト\ \ }\ a^2$$-\boxed{\ \ ナ\ \ }\ a+\displaystyle \frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$
である。

(4)次に、(2),(3)で定めた$S,T$に対して、$U=2T-3S$とおく。$a$が
$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$の範囲を動くとき、$Uはa=\displaystyle \frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$で
最大値$\displaystyle \frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒフ\ \ }}$をとる。

2020センター試験過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第5問〜平面図形、チェバの定理、メネラウスの定理、方べきの定理

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、辺$BC$を$7:1$に内分する点を$D$とし、辺$AC$を$7:1$に
内分する点を$E$とする。線分$AD$と線分$BE$の交点を$F$とし、直線$CF$
と辺$AB$の交点を$G$とすると

$\displaystyle \frac{GB}{AG}=\boxed{\ \ ア\ \ }, \displaystyle \frac{FD}{AF}=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},$$ \displaystyle \frac{FC}{GF}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$

である。したがって

$\displaystyle \frac{\triangle CDGの面積}{\triangle BFGの面積}=\displaystyle \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\displaystyle$

となる。

4点$B,D,F,G$が同一円周上にあり、かつ$FD=1$のとき

$AB=\boxed{\ \ ケコ\ \ }$

である。さらに、$AE=3\sqrt7$とするとき、$AE・AC=\boxed{\ \ サシ\ \ }$であり

$\angle AEG=\boxed{\ \ ス\ \ }$

である。$\boxed{\ \ ス\ \ }$に当てはまるものを、次の⓪~③のうちから一つ選べ。
⓪$\angle BGE$
①$\angle ADB$
②$\angle ABC$
③$\angle BAD$

2020センター試験過去問
この動画を見る 

2020年センター試験の塾生の結果報告【篠原好】

アイキャッチ画像
単元: #センター試験・共通テスト関連#センター試験#その他#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「2020年センター試験の塾生の結果」についての報告です。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#センター試験#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
点$O$を原点とする座標空間に2点
$A(3, 3, -6),$ $B(2+2\sqrt3,$ $2-2\sqrt3, -4)$
をとる。3点$O,A,B$の定める平面を$\alpha$とする。また、$\alpha$に含まれる点$C$は

$\overrightarrow{ OA } \bot \overrightarrow{ OC },$ $\overrightarrow{ OB }・\overrightarrow{ OC }=24$ $\cdots$①

を満たすとする。

(1) $|\overrightarrow{ OA }|=\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }},$ $|\overrightarrow{ OB }|=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$であり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=\boxed{\ \ オカ\ \ }$である。

(2)点$C$は平面$\alpha$上にあるので、実数$s,$ $t$を用いて、$\overrightarrow{ OC }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$と
表すことができる。このとき、①から$s=\displaystyle \frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $t=\boxed{\ \ コ\ \ }$である。
したがって、$|\overrightarrow{ OC }|=\boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}$である。

(3)$\overrightarrow{ CB }=\left(\boxed{\ \ ス\ \ }, \boxed{\ \ セ\ \ }, \boxed{\ \ ソタ\ \ }\right)$である。したがって、平面$\alpha$上の
四角形$OABC$は$\boxed{\ \ チ\ \ }$。
$\boxed{\ \ チ\ \ }$に当てはまるものを、次の⓪~④のうちから一つ選べ。
ただし、少なくとも一組の対辺が平行な四角形を台形という。

⓪正方形である
①正方形ではないが、長方形である
②長方形ではないが、平行四辺形である
③平行四辺形ではないが、台形である
④台形ではない

$\overrightarrow{ OA } \bot \overrightarrow{ OC }$であるので、四角形$OABC$の面積は$\boxed{\ \ ツテ\ \ }$である。

(4)$\overrightarrow{ OA } \bot \overrightarrow{ OD },$ $\overrightarrow{ OC }・\overrightarrow{ OD }=2\sqrt6$かつ$z$座標が1であるような点$D$の座標は
$(\boxed{\ \ ト\ \ }+\displaystyle \frac{\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }},$$ \boxed{\ \ ヌ\ \ }+\displaystyle \frac{\sqrt{\boxed{\ \ ネ\ \ }}}{\boxed{\ \ ノ\ \ }}, 1)$
である。このとき$\angle COD=\boxed{\ \ ハヒ\ \ }°$である。
3点$O,C,D$の定める平面を$\beta$とする。$\alpha$と$\beta$は垂直であるので、三角形
$ABC$を底面とする四面体$DABC$の高さは$\sqrt{\boxed{\ \ フ\ \ }}$である。したがって、
四面体$DABC$の体積は$\boxed{\ \ ヘ\ \ }\sqrt{\boxed{\ \ ホ\ \ }}$ である。

2020センター試験過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第1問〜三角関数、指数対数関数、図形と方程式

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#指数関数と対数関数#指数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1](1)$0 \leqq \theta \lt 2\pi$のとき
$\sin\theta \gt \sqrt3\cos\left(\theta-\displaystyle \frac{\pi}{3}\right)$ $\cdots$①
となる$\theta$の値の範囲を求めよう。
加法定理を用いると

$\sqrt3\cos\left(\theta-\frac{\pi}{3}\right)=$$\displaystyle\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }}\cos\theta+\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ イ\ \ }}\sin\theta$

である。よって、三角関数の合成を用いると、①は

$\sin\left(\theta+\displaystyle\frac{\pi}{\boxed{\ \ エ\ \ }}\right) \lt 0$

と変形できる。したがって、求める範囲は

$\displaystyle\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\pi \lt \theta \lt \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi$

である。

(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$とし、$k$を実数とする。$\sin\theta$と$\cos\theta$は$x$の2次方程式
$25x^2-35x+k=0$の解であるとする。このとき、解と係数の関係に
より$\sin\theta+\cos\theta$と$\sin\theta\cos\theta$の値を考えれば、$k=\boxed{\ \ ケコ\ \ }$で
あることがわかる。

さらに、$\theta$が$\sin\theta \geqq \cos\theta$を満たすとすると、$\sin\theta=\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }},$
$\cos\theta=\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$である。このとき、$\theta$は$\boxed{\ \ ソ\ \ }$を満たす。
$\boxed{\ \ ソ\ \ }$に当てはまるものを、次の⓪~⑤のうちから一つ選べ。
⓪$0 \leqq \theta \lt \displaystyle\frac{\pi}{12}$

①$\displaystyle\frac{\pi}{12} \leqq \theta \lt \displaystyle\frac{\pi}{6}$

②$\displaystyle\frac{\pi}{6} \leqq \theta \lt \displaystyle\frac{\pi}{4}$

③$\displaystyle\frac{\pi}{4} \leqq \theta \lt \displaystyle\frac{\pi}{3}$

④$\displaystyle\frac{\pi}{3} \leqq \theta \lt \displaystyle\frac{5}{12}\pi$

⑤$\displaystyle\frac{5}{12}\pi \leqq \theta \leqq \displaystyle\frac{\pi}{2}$


[2](1)$t$は正の実数であり、$t^{\displaystyle\frac{1}{3}}-t^{-\displaystyle\frac{1}{3}}=-3$を満たすとする。このとき

$t^{\displaystyle\frac{2}{3}}+t^{-\displaystyle\frac{2}{3}}=\boxed{\ \ タチ\ \ }$

である。さらに

$t^{\frac{1}{2}}+t^{-\frac{1}{2}}=\sqrt{\boxed{\ \ ツテ\ \ }}, $$t-t^{-1}=\boxed{\ \ トナニ\ \ }$

である。

(2)$x,y$は正の実数とする。連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_3(x\sqrt y) \leqq 5 \cdots②\\
\log_{81}\frac{y}{x^3} \leqq 1 \cdots③
\end{array}
\right.
\end{eqnarray}$

について考える。
$X=\log_3x,$ $Y=\log_3y$とおくと、②は
$\boxed{\ \ ヌ\ \ }\ X+Y \leqq \boxed{\ \ ネノ\ \ }$ $\cdots$④
と変形でき、③は
$\boxed{\ \ ハ\ \ }\ X-Y \geqq \boxed{\ \ ヒフ\ \ }$ $\cdots$⑤
と変形できる。
$X,Y$が④と⑤を満たすとき、$Y$の取り得る最大の整数の値は
$\boxed{\ \ ヘ\ \ }$である。また、$x,y$が②,③と$\log_3y=\boxed{\ \ ヘ\ \ }$を同時に
満たすとき、xの取り得る最大の整数の値は$\boxed{\ \ ホ\ \ }$である。

2020センター試験過去問
この動画を見る 
PAGE TOP