【高校数学】対数①~logとは?対数の基礎~【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】対数①~logとは?対数の基礎~【数学Ⅱ】

問題文全文(内容文):
a^p=$M \Leftrightarrow p$=logaM
a:底 M:真数 p:指数 a>0,a≠1,M>0(真数条件)

【以下の問題に答えよ (動画内の問題】
(1)8$\displaystyle \frac{1}{3}$=2をp=logaMの形にせよ。

(2)log₁₀$\displaystyle \frac{1}{100000}$=-5をa^p=Mの形にせよ。

(3)log₅125を求めよ。
単元: #数Ⅱ#指数関数と対数関数#対数関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a^p=$M \Leftrightarrow p$=logaM
a:底 M:真数 p:指数 a>0,a≠1,M>0(真数条件)

【以下の問題に答えよ (動画内の問題】
(1)8$\displaystyle \frac{1}{3}$=2をp=logaMの形にせよ。

(2)log₁₀$\displaystyle \frac{1}{100000}$=-5をa^p=Mの形にせよ。

(3)log₅125を求めよ。
投稿日:2018.11.14

<関連動画>

対数とみせて様々な知識を使う良問【数学 入試問題】【奈良県立医大】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の関数$ f(x)=(\log_{10}\dfrac{x}{a})(\log_{10}\dfrac{x}{b})$の最小値が$-\dfrac{1}{4}$であるとき、$a,b$mの値を求めよ。
ただし、$a,b$は$ab=100,a>b$を満たす正の実数とする。

奈良県立医大過去問
この動画を見る 

スッキリ解こう!対数・指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$4^{\log_2 x^2}$$+4^{\log_2 \frac{2}{x^2}}=4$
この動画を見る 

北海道大 2次方程式 対数方程式 解の位置関係 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'84北海道大学過去問題
m>2 実数
$x^2-2^{m+1}x+3・2^m=0$・・・①
$2log_2x-log_2(x-1)=m$・・・②
(1)①、②はそれぞれ2つの異なる実数解をもつことを示せ
(2)①の解の1つだけが②の2つの解の間にあることを示せ
この動画を見る 

対数の基本

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\gt 0,b\gt 0$
$a^2+b^2=1$
$\log_a b^2=\log_b ab$
実数$(a,b)$を求めよ.
この動画を見る 

九州大 三次関数 極値の差 ヨビノリ技

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-kx^2+kx+1$が極大値・極小値をもち、その差が$4|k|^3$
$k$の値を求めよ

出典:2019年九州大学 過去問
この動画を見る 
PAGE TOP