#岩手大学(2018) #定積分 #Shorts - 質問解決D.B.(データベース)

#岩手大学(2018) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{1}^{e} x^3log\ x\ dx$

出典:2018年岩手大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} x^3log\ x\ dx$

出典:2018年岩手大学
投稿日:2024.05.22

<関連動画>

福田の数学〜名古屋大学2025理系第3問〜球の通過範囲の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

以下の問いに答えよ。

(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の

円周およびその内部を$C$とする。

$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ

回転させるとき、$C$が通過する領域の面積を求めよ。

(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。

$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の

球面およびその内部を$B$とする。

$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、

$B$が通過する領域の体積を求めよ。

ただし、回転の向きは回転後の$B$の中心が

$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。

$2025$年名古屋大学理系過去問題
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(2)〜逆関数と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (2) $f(x) = log (x/1-x)$ とする。
関数f(x) の逆関数は $f^-1 (x) = [エ]$である。
方程式$f^-1 (x) - a=0$が実数解をもつとき、 定数aのとり得る値の範囲は[オ]である。
方程式 ${f^-1(x)}²-bf^-1 (x)-3b=0$が実数解をもつとき、 定数 bのとり得る値の範囲は[カ]である。

2022北里大学医学部過去問
この動画を見る 

数学「大学入試良問集」【9−3 対数関数と領域図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$log_2\ y+2log_y\ x \leqq 3$を満たす点$(x,y)$の存在する領域を図示せよ。
この動画を見る 

最小値?「あれ」を使いそうな東大の入試問題 #Shorts #ずんだもん #勉強 #数学

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
kを正の実数とし、2次方程式 x²+x-k=0の二つの実数解をα、βとする。kがk>2の範囲を動くとき、α³/(1-β) + β³/(1-α)の最小値を求めよ。
この動画を見る 

大学入試問題#345「とりあえず第一感は置換積分っぽい」 大阪大学 改 2010 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (\displaystyle \frac{e^x}{1+e^x})^2 dx$

出典:2010年大阪大学 入試問題
この動画を見る 
PAGE TOP