【理解度次第で…!】一次関数:玉川学園高等部~全国入試問題解法 - 質問解決D.B.(データベース)

【理解度次第で…!】一次関数:玉川学園高等部~全国入試問題解法

問題文全文(内容文):
ある1次関数F(x)において、F(a+2)-F(a)=3及びF(1)=4を満たす。
(1)F(3)の値を求めよ。
(2)F(0)の値を求めよ。
単元: #数学(中学生)#中2数学#1次関数
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
ある1次関数F(x)において、F(a+2)-F(a)=3及びF(1)=4を満たす。
(1)F(3)の値を求めよ。
(2)F(0)の値を求めよ。
投稿日:2025.06.04

<関連動画>

【高校受験対策/数学】死守-95

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2-(-5)-9$を計算せよ。
②$\frac{3x-y}{4}-\frac{x+2y}{3}$を計算せよ。
③$a^2b×(-3b)÷6ab^2$を計算せよ。
④$\frac{12}{\sqrt2}-\sqrt32$を計算せよ 。

⑤50本の鉛筆を、7人の生徒に1人$a$本ずつ配ると、$b$本余った。
このとき、$b$を$a$の式で表せ。

⑥2次方程式$(x-4)(x+2)=3x-2$を解け。

⑦$a$は正の数とする。
次の文字式のうち、式の値が$a$の値よりも小さくなる文字式はどれか。
次のアーエからすべて選び、その記号で書け。

ア $a+(-\frac{1}{2})$
イ $a-(-\frac{1}{2})$
ウ $a×(-\frac{1}{2})$
エ $a÷(-\frac{1}{2})$

⑧関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq -1$のとき、
$y$の変域は$-3 \leqq y \leqq 12$である。このときの$a$の値を求めよ。

⑨右の図のように、2つの半直線$AB,AC$があり、半直線$AB$上に点$D$をとる。
2つの半直線$AB,AC$の両方に接する円のうち、 点$D$で半直線$AB$と接する円の中心$P$を定規・コンパスを使い作図によって求めよ。
この動画を見る 

【高校受験対策/数学】死守70

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・数学 死守70

①$x^2-36y^2$

➁$(x+3)(x-4)-8$

③$(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$

④$x(x-6)=-4(x-2)$

⑤$3x^2-5x+1=0$

⑥$3a+b=10$

⑦$-6+9÷\frac{1}{4}$

⑧$x^2+xy$

⑨$5xy^2×7xy÷(-x)^2$

➉$\frac{5x-3y}{3}-\frac{3x-7y}{4}$

⑪$3x+4y=x+y=2$

⑫$(2\sqrt{10}-5)(\sqrt{10}+4)$

⑬$x^2-6x-18$

⑭$(x-5)^2-7(x-5)+12$

⑮$0.2(x-2)=x+1.2$

⑯$\frac{x-2}{4}+\frac{2-5x}{6}=1$
この動画を見る 

中学生の解き方 高校生の解き方  日本文理

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
円の半径=2
線分BC=?
*図は動画内参照

日本文理高等学校(改)
この動画を見る 

中2数学「三角形の合同証明①」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~三角形の合同証明①~

例1 右の図で、AB=CB、AD=CDならば△ABD=△CBDであることを証明しなさい。

例2 右の図で、OA=OB, AD//CBならば、△AOD≡△BOCであることを証明 しなさい。

※図は動画内参照
この動画を見る 

【ダ・ビンチの思考…!】確率:福岡県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#福岡県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
4枚の硬貨A、B、C、Dを同時に投げる。少なくとも1枚は表が出る確率を求めよ。硬貨のそれぞれについて、表と裏の出ることは同様に確からしいとする。
この動画を見る 
PAGE TOP