【数ⅢC】複素数平面の基本①複素数平面の基本的な考え方 - 質問解決D.B.(データベース)

【数ⅢC】複素数平面の基本①複素数平面の基本的な考え方

問題文全文(内容文):
動画について不明点や質問などあればコメント欄にお気軽にお書きください!
チャプター:

0:00 オープニング
0:04 基本的な考え方
7:18 絶対値について
10:51 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
動画について不明点や質問などあればコメント欄にお気軽にお書きください!
投稿日:2023.03.03

<関連動画>

福田の数学〜青山学院大学2021年理工学部第4問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数平面上の点zが$z+\bar{ z }=2$を満たしながら動くとき、以下の問いに答えよ。
(1)点z全体が描く図形を複素数平面上に図示せよ。

(2)$w=(2+i)z$ で定まる点w全体が描く図形を調べよう。
$(\textrm{a})w$の実部をu、虚部をvとして$w=u+vi$と表すとき、u,vが満たす方程式
を求めよ。
$(\textrm{b})$点w全体が描く図形を複素数平面上に図示せよ。

(3)$w=z^2$で定まる点w全体が描く図形を複素数平面上に図示せよ。

2021青山学院大学理工学部過去問
この動画を見る 

福井大 2次方程式と複素平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ

出典:2000年福井大学 過去問
この動画を見る 

虚数の3乗根 島根大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3=i$

島根大過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(3)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
①$z^4=-8+8\sqrt3i$ を解け。
②$z=\displaystyle \frac{\sqrt3}{2}+\displaystyle \frac{1}{2}i$ のとき、$(1+\sqrt3i)z^n+2i=0$
を満たす最小の自然数$n$を求めよ。
この動画を見る 

福田の数学〜名古屋大学2022年理系第3問〜複素数平面上の正六角形の頂点の位置

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。
互いに異なる0でない複素数$\alpha,\beta,\gamma$が、
$0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0$, 
$2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0$
を満たし、$\alpha,\beta,\gamma$のそれぞれが正六角形OABCDEの頂点のいずれかであるとする。
(1)$\frac{\beta}{\alpha}$を求め、$\alpha,\beta$がそれぞれどの頂点か答えよ。
(2)組$(\alpha,\beta,\gamma)$を全て求め、それぞれの組について正六角形OABCDEを
複素数平面上に図示せよ。

2022名古屋大学理系過去問
この動画を見る 
PAGE TOP