福田のおもしろ数学548〜無理関数の不定積分 - 質問解決D.B.(データベース)

福田のおもしろ数学548〜無理関数の不定積分

問題文全文(内容文):

不定積分$I=\displaystyle \int \sqrt{x^2-1}dx \ (x\gt 1)$を

$x=\dfrac{1}{\cos\theta}$と

置き換えて求めて下さい。
    
単元: #関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

不定積分$I=\displaystyle \int \sqrt{x^2-1}dx \ (x\gt 1)$を

$x=\dfrac{1}{\cos\theta}$と

置き換えて求めて下さい。
    
投稿日:2025.07.03

<関連動画>

【高校数学】数Ⅲ-77 関数の極限②

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等式が成り立つように、定数$a,b$の値を定めよ。

①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$

②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
この動画を見る 

【高校数学】数Ⅲ-80 関数の極限⑤(指数関数)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty}(\sqrt 2)^x$

②$\displaystyle \lim_{x\to \infty}\left(\dfrac{1}{3}\right)^x$

③$\displaystyle \lim_{x\to \infty}2^{-x}$

④$\displaystyle \lim_{x\to \infty}\dfrac{5^x-7^x}{2^x+7^x}$

⑤$\displaystyle \lim_{x\to \infty}(2^x-3^x)$

⑥$\displaystyle \lim_{x\to \infty}(3^x-2^{2x+1})$
この動画を見る 

【対数の微分】対数関数の微分の導出について解説しました!【数学III】

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
対数関数の微分の導出について解説します。
この動画を見る 

大学入試問題#467「基本すぎる極限問題」 電気通信大学(2013) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(1-\cos2x)\sin3x}{x^3}$

出典:2013年電気通信大学 入試問題
この動画を見る 

原始ピタゴラス数を探せ

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
原始ピタゴラス数に関して解説していきます.
この動画を見る 
PAGE TOP