【高校受験対策】数学-関数37(③) - 質問解決D.B.(データベース)

【高校受験対策】数学-関数37(③)

問題文全文(内容文):
高校受験対策・関数37

Q.
右の図において、直線①は関数$y=x+6$のグラフであり、曲線②は関数$y=ax^2$のグラフである。 2点、A・Bはともに直線①と曲線②との交点で、点Aの$x$座標は$-3$、 点Bの$x$座標は$6$であり、点Cは直線①と$y$軸との交点である。
また、原点を$o$とするとき、点Dは$y$軸上の点で$CO:OD=6:7$であり、 その$y$座標は負である。
点Eは線分AD上の点でAE=EDである。 さらに点Fは$x$軸上の点で、線分BFは$y$軸に平行である。 このとき次の問いに答えなさい。

①曲線②の式$y=ax^2$の$a$の値を求めなさい。

➁直線EFの式を求めなさい。

③線分AFと線分BOとの交点をGとするとき、三角形AGBと三角形DFGの曲積の比を最も簡単な整数の比で表しなさい。
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数37

Q.
右の図において、直線①は関数$y=x+6$のグラフであり、曲線②は関数$y=ax^2$のグラフである。 2点、A・Bはともに直線①と曲線②との交点で、点Aの$x$座標は$-3$、 点Bの$x$座標は$6$であり、点Cは直線①と$y$軸との交点である。
また、原点を$o$とするとき、点Dは$y$軸上の点で$CO:OD=6:7$であり、 その$y$座標は負である。
点Eは線分AD上の点でAE=EDである。 さらに点Fは$x$軸上の点で、線分BFは$y$軸に平行である。 このとき次の問いに答えなさい。

①曲線②の式$y=ax^2$の$a$の値を求めなさい。

➁直線EFの式を求めなさい。

③線分AFと線分BOとの交点をGとするとき、三角形AGBと三角形DFGの曲積の比を最も簡単な整数の比で表しなさい。
投稿日:2018.10.27

<関連動画>

【やることは分かるが…!】文字式:大阪星光学院高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#大阪星光学院高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x=1+\sqrt{2}+\sqrt{3}+\sqrt{5}$のとき、
$x^2-2x+5$の値を求めよ。
この動画を見る 

shape problems : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

単元: #数学(中学生)#中3数学#三平方の定理#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
半径が$1$cm, $2$cm, $3$cmの同心円。
半径$3$cmの円の弦が、半径$1$cmの円と点Rで接している。
弦の実線部分PQの長さは$\fbox{$\hskip5em\Rule{0pt}{0.8em}{0em}$}$cmである。
この動画を見る 

二次関数:國學院大學久我山高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#國學院大學久我山高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 國學院大學久我山高等学校

①$:y=ax^2(a \gt 0)$
②$:y=\displaystyle \frac{1}{2}x^2$
$l:y=x+2$

①と$l$の交点:$A、B$
②と$l$の交点:$P、Q$
点$A$の$x$座標が$-1$

(1)$a$の値を求めなさい。
(2)$\triangle POB$の面積を求めなさい。
※図は動画内参照
この動画を見る 

比例式 広尾学園 高校入試だけどどちらかと言うと高校生向け

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#式の計算(展開、因数分解)#比例・反比例#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
(a+b):(b+c):(c+a)=3:4:5
$\frac{a^3+b^3+c^3}{abc} =?$

広尾学園高等学校
この動画を見る 

【高校受験対策】数学-関数41

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y=\frac{1}{2}x^2$のグラフ上に2点$A$・$B$があり、点$A$の$x$座標は$-3$、点$B$は点$A$と$y$軸について対称である。
このとき次の問いに答えなさい。

問1
関数$y=\frac{1}{2}x^2$について、$x$の変域が$-3 \leqq x \leqq 4$のときの$y$の変域を求めなさい。

問2
$y$軸上に点$C$を、四角形$OBCA$がひし形となるようにとる。
このとき次の問いに答えなさい。

(1) 直線$AC$の式を求めなさい。

(2) 線分$AC$上に点$D$をとる。$△ODA$と四角形$OBCA$の面積比が$1:4$となるとき、点$D$の座標を求 めなさい。
この動画を見る 
PAGE TOP