大学入試問題#475「エフ(f)3つ!」 早稲田大学(2004) #逆関数 - 質問解決D.B.(データベース)

大学入試問題#475「エフ(f)3つ!」 早稲田大学(2004) #逆関数

問題文全文(内容文):
実数$a$に対して
$f(x)=ax+2$とする
$f(f(f(x)))$が$f(x)$の逆関数になるような$a$の値を求めよ。

出典:2004年早稲田大学理工 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:19 本編スタート
05:10 作成した解答①
05:21 作成した解答②
05:31 エンディング

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
実数$a$に対して
$f(x)=ax+2$とする
$f(f(f(x)))$が$f(x)$の逆関数になるような$a$の値を求めよ。

出典:2004年早稲田大学理工 入試問題
投稿日:2023.03.11

<関連動画>

#茨城大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \displaystyle \frac{(\sqrt{ x }+1)^2}{x} dx$

出典:2023年茨城大学
この動画を見る 

大学入試問題#513「このチャンネルでは初めての発想!!」 By Nissydarts さん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{dx}{1-6\sin^2x+12\sin^4x-8\sin^6x}$
この動画を見る 

大学入試問題#400「使いたくないけど・・・・」三重大学医学部2009 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \displaystyle \frac{d\theta}{1+\sin\theta-\cos\theta}$

出典:2009年三重大学医学部 入試問題
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(4)〜定積分で表された関数と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(4)関数f(x)は微分可能であり、すべての実数xについて
$f(x)=e^{2x+1}+4\int_0^xf(t)dt$
を満たすとする。関数$g(x)$を$g(x)=e^{-4x}f(x)$により定めるとき,
$g'(x)=\boxed{シ}$であり、$f(x)=\boxed{ス}$である。また、曲線$y=f(x)$と
x軸およびy軸で囲まれた図形をx軸のまわりに1回転してできる
回転体の体積は$\boxed{セ}$である。

2021北里大学医学部過去問
\end{eqnarray}
この動画を見る 

数学「大学入試良問集」【19−12 (sinx)^nの積分と漸化式の作成】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して、定積分$I_n$を$I_n=\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^nx\ dx$で定める。
$n \geqq 3$のとき、$I_n$を$I_{n-2}$と$n$を用いて表せ。
また、$I_2・I_4$の値を求めよ。
この動画を見る 
PAGE TOP