数学オリンピック予選 整数問題 - 質問解決D.B.(データベース)

数学オリンピック予選 整数問題

問題文全文(内容文):
$11^{12^{13}}$の十の位

$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない

出典:2007年数学オリンピック 予選問題
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$11^{12^{13}}$の十の位

$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない

出典:2007年数学オリンピック 予選問題
投稿日:2019.11.18

<関連動画>

Japanese Mathematics Olympiad 2001

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これらの方程式に適合する実数xを見つけてください
$x^5+2x^4-x^3-5x^2-10x+5=0$
$x^6+4x^5+3x^4-6x^3-20x^2-15x+5=0$
この動画を見る 

練習問題35 数学オリンピックの問題 複素数を利用して証明してみた。

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学オリンピック#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\cos\dfrac{\pi}{7}-\cos\dfrac{2}{7}\pi+\cos\dfrac{3}{7}\pi=\dfrac{1}{2}$
を示せ.
この動画を見る 

数学オリンピック トルコ 標準レベル

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は整数であり,$P$は素数である.
$x^2-3xy+P^2y^2=12P$
$(x,y,P)$の組をすべて求めよ.

数学オリンピックトルコ過去問

この動画を見る 

福田のおもしろ数学210〜2つ対称式の条件から和を求める

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#式の計算(整式・展開・因数分解)#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数 $x, \, y$ が $(1+x)(1+y)(x+y)=2022, \, x^3+y^3=1933$ を満たすとき、$x+y=?$
この動画を見る 

数学オリンピック ベラルーシ 整数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数であり,$P$は素数である.
$a+b=b(a-c)$,$c+1=P^2$なら$a+b$か$ab$は平方数であることを示せ.
この動画を見る 
PAGE TOP