数学オリンピック予選 - 質問解決D.B.(データベース)

数学オリンピック予選

問題文全文(内容文):
$ 有理数係数の2次方程式 x^{2n}+a_1x^{2n-1}+a_2x^{2n-2}+・・・・・・+a_{2n-1}x+a_{2n}=0の解はすべてx^2+5x+7=0の解にもなっている.a_1の値を求めよ.$
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#解と判別式・解と係数の関係#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 有理数係数の2次方程式 x^{2n}+a_1x^{2n-1}+a_2x^{2n-2}+・・・・・・+a_{2n-1}x+a_{2n}=0の解はすべてx^2+5x+7=0の解にもなっている.a_1の値を求めよ.$
投稿日:2022.07.13

<関連動画>

【数Ⅱ】複素数と方程式 :分母に虚数が入ったときの計算方法を解説します!

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+B(旧課程2021年以前)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1/(3-i)をa+biの形に変形せよ。
この動画を見る 

5次式の因数分解 R15中学生はご遠慮ください

アイキャッチ画像
単元: #数Ⅰ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5+16x+32,これを因数分解(整数係数)せよ.$
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#集合と命題(集合・命題と条件・背理法)#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)整数kに対して、xの2次方程式x^2+kx+k+35=0の解を\alpha_k,\beta_kとおく。\\
ただし、方程式が重解をもつときは\alpha_k=\beta_kである。また\\
U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}\\
を全体集合とし、その部分集合\\
A=\left\{k|k \in Uかつ\alpha_k,\beta_kはともに実数で\alpha_k≠\beta_k\right\}\\
B=\left\{k|k \in Uかつ\alpha_k,\beta_kの実数はともに2より大きい\right\}\\
C=\left\{k|k \in Uかつ\alpha_k,\beta_kの実部と虚部はすべて整数\right\}\\
を考える。このときn(A)=\boxed{\ \ (か)\ \ },n(A \cap B)=\boxed{\ \ (き)\ \ },n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },\\
n(A \cap C)=\boxed{\ \ (け)\ \ },n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }である。ただし有限集合Xに対して\\
その要素の個数をn(X)で表す。また\bar{ A }はAの補集合である。
\end{eqnarray}
この動画を見る 

【数Ⅱ】複素数と方程式:解の公式は係数が実数のときのみ使用可能

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす実数xの値を求めよう。
(2+i)x²-(1+6i)x-2(3-4i)=0
この動画を見る 

複素数と方程式 4STEP数Ⅱ 82,83 2次方程式の解と判別式【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
1 (4STEP問題82)
2つの複素数a+biと2-3iの和が純虚数、積が実数となるように、実数a,bの値を求めよ。

2(4STEP問題83)
虚数α,βの和、積がともに実数ならば、αとβは互いに共役であることを示せ。
この動画を見る 
PAGE TOP