気付けば、ほらそこに答えが - 質問解決D.B.(データベース)

気付けば、ほらそこに答えが

問題文全文(内容文):
a+b+c=0 , abc=2のとき
(2a+b+c)(a+2b+c)(a+b+2c)=

帝塚山高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
a+b+c=0 , abc=2のとき
(2a+b+c)(a+2b+c)(a+b+2c)=

帝塚山高等学校
投稿日:2021.05.30

<関連動画>

【高校受験対策】数学-死守28

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#2次関数#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(- 4) + 3\times (- 3)$を計算しなさい。

②$\dfrac{2x - 1}{3} - \dfrac{3x + 1}{5}$を計算しなさい。

③$(\sqrt{12} + \sqrt{18})(\sqrt3 - \sqrt2)$を計算しなさい。

④$(x - 4)^ 2 + 2(x - 2) - 3$を因数分解しなさい。

⑤方程式$(x + 3)(x - 5) = 5x - 24$を解きなさい。

⑥次の連立方程式を解きなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+5=3y-2 \\
3x+2y=16
\end{array}
\right.
\end{eqnarray}$

⑦関数$y=-3x^2$について、
$x$の値が1から3まで増加するときの変化の割合を求めなさい。

⑧1つのさいころを2回投げるとき、1回目に出た目の数が、
2回目に出た目の数の倍数となる確率を求めなさい。

⑨男子20人、好16人のクラスでテストを行ったところ、 男子の平均点が$x$点で、
女子の平均点が$y$点であった。このクラスのテストの合計点は何点か、
$y$を使った式で表しなさい。

⑩三角柱と三角すいがあり、底面は相似な三角形で高さが等しい。
三角柱の底面と三角すいの底面の相似比が$1:2$であるとき、
三角柱の体積は三角すいの体積の何倍か、求めなさい。
この動画を見る 

【高校受験対策】数学-死守22

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#立体図形#立体切断#立体図形その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$1-(-3)$を計算しなさい.

②$2a+\dfrac{a}{3}$を計算しなさい.

③$4(2x - y) - 3(x + y) $を計算しなさい.

④$(3x+1)^2$展開しなさい.

⑤$4a^2-12ab$を因数分解しなさい.

⑥連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=4 \\
4x-3y=18
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦七角形の内角の和を求めなさい.

⑧2次方程式$x ^ 2 + x - 12 = 0$を解きなさい.

⑨$\sqrt2 \lt x \lt \sqrt{19}$を満たす$x$を,小さい順にすべて書きなさい.

⑩右の図は,立体図の展開図である.
この展開図を組み立てて立方体をつくるとき,
面アと垂直になる面を,面イ~カからすべて選び,記号で答えなさい.

⑪$1,2,3,4,5$の数字を1つずつ記入した5枚のカードがある.
このカードをよくきってから1枚ずつ2回続けて引き,
引いた順に左から並べて2けたの整数をつくる.
このとき,できた2けたの整数が4の倍数である確率を求めなさい.

図は動画内参照
この動画を見る 

因数分解 函館ラ・サール

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^4(2x-3y)+27(9y-6x)$を因数分解

函館ラ・サール高等学校
この動画を見る 

【中学数学】分数の割り算・多項式の計算~計算ミスをなくす方法~ 1-2【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(12a^2-6a)\div \displaystyle \frac{2}{3}$

2⃣
$(\displaystyle \frac{2}{3}x^2y^2-\displaystyle \frac{4}{9}xy^2+2xy)\div(-\displaystyle \frac{2}{9}xy)$

3⃣
$(4x^3-6x^2+\displaystyle \frac{8}{5}x)\div(-\displaystyle \frac{4}{5}x)$

4⃣
$(-8a^2b+16ab)\div \displaystyle \frac{4}{5}a$

5⃣
$(4ab^2+5abc+\displaystyle \frac{1}{2})\div(\displaystyle \frac{7b}{5a})$
この動画を見る 

【高校受験対策】数学-死守36

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36

①$5+4 \times 6$を計算せよ

②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ

③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ

④比例式$3:4=(x-6):8$について$x$の値を求めよ。

⑤$3x^2+9x-12$を因数分解せよ。

⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。

⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
この動画を見る 
PAGE TOP