藤田医科大 ドモアブルの定理 - 質問解決D.B.(データベース)

藤田医科大 ドモアブルの定理

問題文全文(内容文):
$(1+i)^n=(1-i)n$をみたす2023以下の自然数nの個数を答えよ.

2023藤田医科大過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+i)^n=(1-i)n$をみたす2023以下の自然数nの個数を答えよ.

2023藤田医科大過去問
投稿日:2023.01.31

<関連動画>

大学入試問題#44 明治大学(2021) 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$|z|=2$のとき
$|z^2+iz-1|$のとりうる値の範囲を求めよ。

出典:2021年明治大学 入試問題
この動画を見る 

【数ⅢC】複素数平面の基本⑤複素数の積・商の考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
$\cos\dfrac{2}{3}\pi-i\sin\dfrac{2}{3}\pi$
この動画を見る 

【数C】【複素数平面】高次方程式3 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$z^6+z^3+1=0$の解を求めよ。ただし、解は 極形式のままでよい。
この動画を見る 

【数ⅢC】複素数平面の基本②複素数平面における絶対値の計算

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数の絶対値を求めよ
(1)$-3+4i$ (2)$(1-2i)^2$ (3)$\dfrac{2+3i}{5-i}$
2点$A(\alpha),B(\beta)$間の距離を求めよ
(1)$\alpha=3+4i,\beta=7+5i$ (2)$\alpha=-3i,\beta=5$
この動画を見る 

慈恵医大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.

(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.

(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.

慈恵医大過去問
この動画を見る 
PAGE TOP